Do you want to publish a course? Click here

Teach Me What to Say and I Will Learn What to Pick: Unsupervised Knowledge Selection Through Response Generation with Pretrained Generative Models

أعلمني ماذا أقول وسأتعلم ما لا أختاره: اختيار المعرفة غير المدعومة من خلال توليد الاستجابة مع النماذج الإدارية المحددة مسبقا

253   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Knowledge Grounded Conversation Models are usually based on a selection/retrieval module and a generation module, trained separately or simultaneously, with or without having access to a gold' knowledge option. With the introduction of large pre-trained generative models, the selection and generation part have become more and more entangled, shifting the focus towards enhancing knowledge incorporation (from multiple sources) instead of trying to pick the best knowledge option. These approaches however depend on knowledge labels and/or a separate dense retriever for their best performance. In this work we study the unsupervised selection abilities of pre-trained generative models (e.g. BART) and show that by adding a score-and-aggregate module between encoder and decoder, they are capable of learning to pick the proper knowledge through minimising the language modelling loss (i.e. without having access to knowledge labels). Trained as such, our model - K-Mine - shows competitive selection and generation performance against models that benefit from knowledge labels and/or separate dense retriever.



References used
https://aclanthology.org/
rate research

Read More

Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled d ata that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.
To obtain high-quality sentence embeddings from pretrained language models (PLMs), they must either be augmented with additional pretraining objectives or finetuned on a large set of labeled text pairs. While the latter approach typically outperforms the former, it requires great human effort to generate suitable datasets of sufficient size. In this paper, we show how PLMs can be leveraged to obtain high-quality sentence embeddings without the need for labeled data, finetuning or modifications to the pretraining objective: We utilize the generative abilities of large and high-performing PLMs to generate entire datasets of labeled text pairs from scratch, which we then use for finetuning much smaller and more efficient models. Our fully unsupervised approach outperforms strong baselines on several semantic textual similarity datasets.
In this paper, we investigate what types of stereotypical information are captured by pretrained language models. We present the first dataset comprising stereotypical attributes of a range of social groups and propose a method to elicit stereotypes encoded by pretrained language models in an unsupervised fashion. Moreover, we link the emergent stereotypes to their manifestation as basic emotions as a means to study their emotional effects in a more generalized manner. To demonstrate how our methods can be used to analyze emotion and stereotype shifts due to linguistic experience, we use fine-tuning on news sources as a case study. Our experiments expose how attitudes towards different social groups vary across models and how quickly emotions and stereotypes can shift at the fine-tuning stage.
Large-scale language models (LMs) pretrained on massive corpora of text, such as GPT-2, are powerful open-domain text generators. However, as our systematic examination reveals, it is still challenging for such models to generate coherent long passag es of text (e.g., 1000 tokens), especially when the models are fine-tuned to the target domain on a small corpus. Previous planning-then-generation methods also fall short of producing such long text in various domains. To overcome the limitations, we propose a simple but effective method of generating text in a progressive manner, inspired by generating images from low to high resolution. Our method first produces domain-specific content keywords and then progressively refines them into complete passages in multiple stages. The simple design allows our approach to take advantage of pretrained LMs at each stage and effectively adapt to any target domain given only a small set of examples. We conduct a comprehensive empirical study with a broad set of evaluation metrics, and show that our approach significantly improves upon the fine-tuned large LMs and various planning-then-generation methods in terms of quality and sample efficiency. Human evaluation also validates that our model generations are more coherent.
Evaluation for many natural language understanding (NLU) tasks is broken: Unreliable and biased systems score so highly on standard benchmarks that there is little room for researchers who develop better systems to demonstrate their improvements. The recent trend to abandon IID benchmarks in favor of adversarially-constructed, out-of-distribution test sets ensures that current models will perform poorly, but ultimately only obscures the abilities that we want our benchmarks to measure. In this position paper, we lay out four criteria that we argue NLU benchmarks should meet. We argue most current benchmarks fail at these criteria, and that adversarial data collection does not meaningfully address the causes of these failures. Instead, restoring a healthy evaluation ecosystem will require significant progress in the design of benchmark datasets, the reliability with which they are annotated, their size, and the ways they handle social bias.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا