Do you want to publish a course? Click here

Abstract Meaning Representation (AMR) is a graphical meaning representation language designed to represent propositional information about argument structure. However, at present it is unable to satisfyingly represent non-veridical intensional contex ts, often licensing inappropriate inferences. In this paper, we show how to resolve the problem of non-veridicality without appealing to layered graphs through a mapping from AMRs into Simply-Typed Lambda Calculus (STLC). At least for some cases, this requires the introduction of a new role :content which functions as an intensional operator. The translation proposed is inspired by the formal linguistics literature on the event semantics of attitude reports. Next, we address the interaction of quantifier scope and intensional operators in so-called de re/de dicto ambiguities. We adopt a scope node from the literature and provide an explicit multidimensional semantics utilizing Cooper storage which allows us to derive the de re and de dicto scope readings as well as intermediate scope readings which prove difficult for accounts without a scope node.
In cross-lingual Abstract Meaning Representation (AMR) parsing, researchers develop models that project sentences from various languages onto their AMRs to capture their essential semantic structures: given a sentence in any language, we aim to captu re its core semantic content through concepts connected by manifold types of semantic relations. Methods typically leverage large silver training data to learn a single model that is able to project non-English sentences to AMRs. However, we find that a simple baseline tends to be overlooked: translating the sentences to English and projecting their AMR with a monolingual AMR parser (translate+parse,T+P). In this paper, we revisit this simple two-step base-line, and enhance it with a strong NMT system and a strong AMR parser. Our experiments show that T+P outperforms a recent state-of-the-art system across all tested languages: German, Italian, Spanish and Mandarin with +14.6, +12.6, +14.3 and +16.0 Smatch points
AMR (Abstract Meaning Representation) and EDS (Elementary Dependency Structures) are two popular meaning representations in NLP/NLU. AMR is more abstract and conceptual, while EDS is more low level, closer to the lexical structures of the given sente nces. It is thus not surprising that EDS parsing is easier than AMR parsing. In this work, we consider using information from EDS parsing to help improve the performance of AMR parsing. We adopt a transition-based parser and propose to add EDS graphs as additional semantic features using a graph encoder composed of LSTM layer and GCN layer. Our experimental results show that the additional information from EDS parsing indeed gives a boost to the performance of the base AMR parser used in our experiments.
This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts.Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in cloze-style machine reading comprehension tasks. Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate models' ability in comprehending the two types of abstract meaning and the models' generalizability. Specifically, Subtask 1 aims to evaluate how well a participating system models concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models' ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models' generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3. The leaderboard and competition website can be found at https://competitions.codalab.org/competitions/26153. The data and baseline code are available at https://github.com/boyuanzheng010/SemEval2021-Reading-Comprehension-of-Abstract-Meaning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا