Do you want to publish a course? Click here

Incorporating EDS Graph for AMR Parsing

دمج EDS الرسم البياني لحل AMR

510   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

AMR (Abstract Meaning Representation) and EDS (Elementary Dependency Structures) are two popular meaning representations in NLP/NLU. AMR is more abstract and conceptual, while EDS is more low level, closer to the lexical structures of the given sentences. It is thus not surprising that EDS parsing is easier than AMR parsing. In this work, we consider using information from EDS parsing to help improve the performance of AMR parsing. We adopt a transition-based parser and propose to add EDS graphs as additional semantic features using a graph encoder composed of LSTM layer and GCN layer. Our experimental results show that the additional information from EDS parsing indeed gives a boost to the performance of the base AMR parser used in our experiments.



References used
https://aclanthology.org/
rate research

Read More

Abstract Several metrics have been proposed for assessing the similarity of (abstract) meaning representations (AMRs), but little is known about how they relate to human similarity ratings. Moreover, the current metrics have complementary strengths a nd weaknesses: Some emphasize speed, while others make the alignment of graph structures explicit, at the price of a costly alignment step. In this work we propose new Weisfeiler-Leman AMR similarity metrics that unify the strengths of previous metrics, while mitigating their weaknesses. Specifically, our new metrics are able to match contextualized substructures and induce n:m alignments between their nodes. Furthermore, we introduce a Benchmark for AMR Metrics based on Overt Objectives (Bamboo), the first benchmark to support empirical assessment of graph-based MR similarity metrics. Bamboo maximizes the interpretability of results by defining multiple overt objectives that range from sentence similarity objectives to stress tests that probe a metric's robustness against meaning-altering and meaning- preserving graph transformations. We show the benefits of Bamboo by profiling previous metrics and our own metrics. Results indicate that our novel metrics may serve as a strong baseline for future work.
AM dependency parsing is a method for neural semantic graph parsing that exploits the principle of compositionality. While AM dependency parsers have been shown to be fast and accurate across several graphbanks, they require explicit annotations of t he compositional tree structures for training. In the past, these were obtained using complex graphbank-specific heuristics written by experts. Here we show how they can instead be trained directly on the graphs with a neural latent-variable model, drastically reducing the amount and complexity of manual heuristics. We demonstrate that our model picks up on several linguistic phenomena on its own and achieves comparable accuracy to supervised training, greatly facilitating the use of AM dependency parsing for new sembanks.
The dominant paradigm for semantic parsing in recent years is to formulate parsing as a sequence-to-sequence task, generating predictions with auto-regressive sequence decoders. In this work, we explore an alternative paradigm. We formulate semantic parsing as a dependency parsing task, applying graph-based decoding techniques developed for syntactic parsing. We compare various decoding techniques given the same pre-trained Transformer encoder on the TOP dataset, including settings where training data is limited or contains only partially-annotated examples. We find that our graph-based approach is competitive with sequence decoders on the standard setting, and offers significant improvements in data efficiency and settings where partially-annotated data is available.
Lacking sufficient human-annotated data is one main challenge for abstract meaning representation (AMR) parsing. To alleviate this problem, previous works usually make use of silver data or pre-trained language models. In particular, one recent seq-t o-seq work directly fine-tunes AMR graph sequences on the encoder-decoder pre-trained language model and achieves new state-of-the-art results, outperforming previous works by a large margin. However, it makes the decoding relatively slower. In this work, we investigate alternative approaches to achieve competitive performance at faster speeds. We propose a simplified AMR parser and a pre-training technique for the effective usage of silver data. We conduct extensive experiments on the widely used AMR2.0 dataset and the results demonstrate that our Transformer-based AMR parser achieves the best performance among the seq2graph-based models. Furthermore, with silver data, our model achieves competitive results with the SOTA model, and the speed is an order of magnitude faster. Detailed analyses are conducted to gain more insights into our proposed model and the effectiveness of the pre-training technique.
We propose the Recursive Non-autoregressive Graph-to-Graph Transformer architecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntacti c dependency parsing. We demonstrate the power and effectiveness of RNGTr on several dependency corpora, using a refinement model pre-trained with BERT. We also introduce Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr can improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009 corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly improving the state-of-the-art for all corpora tested.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا