Do you want to publish a course? Click here

Translate, then Parse! A Strong Baseline for Cross-Lingual AMR Parsing

ترجمة، ثم تحليل!خط أساس قوي لتخليص AMR عبر اللغات

415   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In cross-lingual Abstract Meaning Representation (AMR) parsing, researchers develop models that project sentences from various languages onto their AMRs to capture their essential semantic structures: given a sentence in any language, we aim to capture its core semantic content through concepts connected by manifold types of semantic relations. Methods typically leverage large silver training data to learn a single model that is able to project non-English sentences to AMRs. However, we find that a simple baseline tends to be overlooked: translating the sentences to English and projecting their AMR with a monolingual AMR parser (translate+parse,T+P). In this paper, we revisit this simple two-step base-line, and enhance it with a strong NMT system and a strong AMR parser. Our experiments show that T+P outperforms a recent state-of-the-art system across all tested languages: German, Italian, Spanish and Mandarin with +14.6, +12.6, +14.3 and +16.0 Smatch points



References used
https://aclanthology.org/
rate research

Read More

Aspect-based Sentiment Analysis (ABSA), aiming at predicting the polarities for aspects, is a fine-grained task in the field of sentiment analysis. Previous work showed syntactic information, e.g. dependency trees, can effectively improve the ABSA pe rformance. Recently, pre-trained models (PTMs) also have shown their effectiveness on ABSA. Therefore, the question naturally arises whether PTMs contain sufficient syntactic information for ABSA so that we can obtain a good ABSA model only based on PTMs. In this paper, we firstly compare the induced trees from PTMs and the dependency parsing trees on several popular models for the ABSA task, showing that the induced tree from fine-tuned RoBERTa (FT-RoBERTa) outperforms the parser-provided tree. The further analysis experiments reveal that the FT-RoBERTa Induced Tree is more sentiment-word-oriented and could benefit the ABSA task. The experiments also show that the pure RoBERTa-based model can outperform or approximate to the previous SOTA performances on six datasets across four languages since it implicitly incorporates the task-oriented syntactic information.
Recent work has shown that monolingual masked language models learn to represent data-driven notions of language variation which can be used for domain-targeted training data selection. Dataset genre labels are already frequently available, yet remai n largely unexplored in cross-lingual setups. We harness this genre metadata as a weak supervision signal for targeted data selection in zero-shot dependency parsing. Specifically, we project treebank-level genre information to the finer-grained sentence level, with the goal to amplify information implicitly stored in unsupervised contextualized representations. We demonstrate that genre is recoverable from multilingual contextual embeddings and that it provides an effective signal for training data selection in cross-lingual, zero-shot scenarios. For 12 low-resource language treebanks, six of which are test-only, our genre-specific methods significantly outperform competitive baselines as well as recent embedding-based methods for data selection. Moreover, genre-based data selection provides new state-of-the-art results for three of these target languages.
Lacking sufficient human-annotated data is one main challenge for abstract meaning representation (AMR) parsing. To alleviate this problem, previous works usually make use of silver data or pre-trained language models. In particular, one recent seq-t o-seq work directly fine-tunes AMR graph sequences on the encoder-decoder pre-trained language model and achieves new state-of-the-art results, outperforming previous works by a large margin. However, it makes the decoding relatively slower. In this work, we investigate alternative approaches to achieve competitive performance at faster speeds. We propose a simplified AMR parser and a pre-training technique for the effective usage of silver data. We conduct extensive experiments on the widely used AMR2.0 dataset and the results demonstrate that our Transformer-based AMR parser achieves the best performance among the seq2graph-based models. Furthermore, with silver data, our model achieves competitive results with the SOTA model, and the speed is an order of magnitude faster. Detailed analyses are conducted to gain more insights into our proposed model and the effectiveness of the pre-training technique.
Translation divergences are varied and widespread, challenging approaches that rely on parallel text. To annotate translation divergences, we propose a schema grounded in the Abstract Meaning Representation (AMR), a sentence-level semantic framework instantiated for a number of languages. By comparing parallel AMR graphs, we can identify specific points of divergence. Each divergence is labeled with both a type and a cause. We release a small corpus of annotated English-Spanish data, and analyze the annotations in our corpus.
Manually annotating a treebank is time-consuming and labor-intensive. We conduct delexicalized cross-lingual dependency parsing experiments, where we train the parser on one language and test on our target language. As our test case, we use Xibe, a s everely under-resourced Tungusic language. We assume that choosing a closely related language as the source language will provide better results than more distant relatives. However, it is not clear how to determine those closely related languages. We investigate three different methods: choosing the typologically closest language, using LangRank, and choosing the most similar language based on perplexity. We train parsing models on the selected languages using UDify and test on different genres of Xibe data. The results show that languages selected based on typology and perplexity scores outperform those predicted by LangRank; Japanese is the optimal source language. In determining the source language, proximity to the target language is more important than large training sizes. Parsing is also influenced by genre differences, but they have little influence as long as the training data is at least as complex as the target.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا