Do you want to publish a course? Click here

In this paper, a problem of ride comfort enhancement in a moving vehicle was introduced and controlled by damping force to deduce vibration caused by road profile. Sliding mode control was used to give the damping force in two degree of freedom su spension system. A mechanic model of suspension system was given, dampers and springs were used for passive damping to reduce chattering and sliding mode control for semi-active control with proposed method by using supervised fuzzy logic control for chattering decreasing was designed. A simulation with the given initial conditions was designed using Matlab/Simulink. By computing of root mean square error we got that the proposed method gave the best responses with the smallest chattering compared with traditional mechanical damping and sliding mode control. All results plotted using Matlab/Simulink.
In this paper a robust control using a sliding mode control of the active and the reactive power generated by a doubly-fed induction generator (DFIG) is presented. It provides a robust regulation of the stator side active and reactive power by cur rents and it is suitable for both electric energy generation and drive applications. The mathematical model of the machine written in an appropriate d-q reference frame fixed with a stator flux in order to obtain the decoupled system of control. In this case the control of the active and reactive power flowing between the stator of the DFIG and the power network is synthesized using sliding mode controllers. A good performance tracking is guaranteed in terms of stator currents references.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا