Do you want to publish a course? Click here

Multilingual pre-trained models have demonstrated their effectiveness in many multilingual NLP tasks and enabled zero-shot or few-shot transfer from high-resource languages to low-resource ones. However, due to significant typological differences and contradictions between some languages, such models usually perform poorly on many languages and cross-lingual settings, which shows the difficulty of learning a single model to handle massive diverse languages well at the same time. To alleviate this issue, we present a new multilingual pre-training pipeline. We propose to generate language representation from multilingual pre-trained model and conduct linguistic analysis to show that language representation similarity reflects linguistic similarity from multiple perspectives, including language family, geographical sprachbund, lexicostatistics, and syntax. Then we cluster all the target languages into multiple groups and name each group as a representation sprachbund. Thus, languages in the same representation sprachbund are supposed to boost each other in both pre-training and fine-tuning as they share rich linguistic similarity. We pre-train one multilingual model for each representation sprachbund. Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
Recent metaphor identification approaches mainly consider the contextual text features within a sentence or introduce external linguistic features to the model. But they usually ignore the extra information that the data can provide, such as the cont extual metaphor information and broader discourse information. In this paper, we propose a model augmented with hierarchical contextualized representation to extract more information from both sentence-level and discourse-level. At the sentence level, we leverage the metaphor information of words that except the target word in the sentence to strengthen the reasoning ability of our model via a novel label-enhanced contextualized representation. At the discourse level, the position-aware global memory network is adopted to learn long-range dependency among the same words within a discourse. Finally, our model combines the representations obtained from these two parts. The experiment results on two tasks of the VUA dataset show that our model outperforms every other state-of-the-art method that also does not use any external knowledge except what the pre-trained language model contains.
Relational knowledge bases (KBs) are commonly used to represent world knowledge in machines. However, while advantageous for their high degree of precision and interpretability, KBs are usually organized according to manually-defined schemas, which l imit their expressiveness and require significant human efforts to engineer and maintain. In this review, we take a natural language processing perspective to these limitations, examining how they may be addressed in part by training deep contextual language models (LMs) to internalize and express relational knowledge in more flexible forms. We propose to organize knowledge representation strategies in LMs by the level of KB supervision provided, from no KB supervision at all to entity- and relation-level supervision. Our contributions are threefold: (1) We provide a high-level, extensible taxonomy for knowledge representation in LMs; (2) Within our taxonomy, we highlight notable models, evaluation tasks, and findings, in order to provide an up-to-date review of current knowledge representation capabilities in LMs; and (3) We suggest future research directions that build upon the complementary aspects of LMs and KBs as knowledge representations.
Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle relatively short text. It is still a challenge when it comes to modeling very long documents. In this work, we propose to use a graph attention network on top of the available pretrained Transformers model to learn document embeddings. This graph attention network allows us to leverage the high-level semantic structure of the document. In addition, based on our graph document model, we design a simple contrastive learning strategy to pretrain our models on a large amount of unlabeled corpus. Empirically, we demonstrate the effectiveness of our approaches in document classification and document retrieval tasks.
Human knowledge is collectively encoded in the roughly 6500 languages spoken around the world, but it is not distributed equally across languages. Hence, for information-seeking question answering (QA) systems to adequately serve speakers of all lang uages, they need to operate cross-lingually. In this work we investigate the capabilities of multilingually pretrained language models on cross-lingual QA. We find that explicitly aligning the representations across languages with a post-hoc finetuning step generally leads to improved performance. We additionally investigate the effect of data size as well as the language choice in this fine-tuning step, also releasing a dataset for evaluating cross-lingual QA systems.
Taxonomies are valuable resources for many applications, but the limited coverage due to the expensive manual curation process hinders their general applicability. Prior works attempt to automatically expand existing taxonomies to improve their cover age by learning concept embeddings in Euclidean space, while taxonomies, inherently hierarchical, more naturally align with the geometric properties of a hyperbolic space. In this paper, we present HyperExpan, a taxonomy expansion algorithm that seeks to preserve the structure of a taxonomy in a more expressive hyperbolic embedding space and learn to represent concepts and their relations with a Hyperbolic Graph Neural Network (HGNN). Specifically, HyperExpan leverages position embeddings to exploit the structure of the existing taxonomies, and characterizes the concept profile information to support the inference on new concepts that are unseen during training. Experiments show that our proposed HyperExpan outperforms baseline models with representation learning in a Euclidean feature space and achieves state-of-the-art performance on the taxonomy expansion benchmarks.
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge t hat infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
We propose a method to distill a language-agnostic meaning embedding from a multilingual sentence encoder. By removing language-specific information from the original embedding, we retrieve an embedding that fully represents the sentence's meaning. T he proposed method relies only on parallel corpora without any human annotations. Our meaning embedding allows efficient cross-lingual sentence similarity estimation by simple cosine similarity calculation. Experimental results on both quality estimation of machine translation and cross-lingual semantic textual similarity tasks reveal that our method consistently outperforms the strong baselines using the original multilingual embedding. Our method consistently improves the performance of any pre-trained multilingual sentence encoder, even in low-resource language pairs where only tens of thousands of parallel sentence pairs are available.
Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is genera lly acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.
Short text classification is a fundamental task in natural language processing. It is hard due to the lack of context information and labeled data in practice. In this paper, we propose a new method called SHINE, which is based on graph neural networ k (GNN), for short text classification. First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs which introduce more semantic and syntactic information. Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts. Thus, comparing with existing GNN-based methods, SHINE can better exploit interactions between nodes of the same types and capture similarities between short texts. Extensive experiments on various benchmark short text datasets show that SHINE consistently outperforms state-of-the-art methods, especially with fewer labels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا