Do you want to publish a course? Click here

Investigating Post-pretraining Representation Alignment for Cross-Lingual Question Answering

التحقيق في محاذاة التمثيل بعد الاحتجاج بها للنظرات الشاملة الإجابة

230   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Human knowledge is collectively encoded in the roughly 6500 languages spoken around the world, but it is not distributed equally across languages. Hence, for information-seeking question answering (QA) systems to adequately serve speakers of all languages, they need to operate cross-lingually. In this work we investigate the capabilities of multilingually pretrained language models on cross-lingual QA. We find that explicitly aligning the representations across languages with a post-hoc finetuning step generally leads to improved performance. We additionally investigate the effect of data size as well as the language choice in this fine-tuning step, also releasing a dataset for evaluating cross-lingual QA systems.

References used
https://aclanthology.org/

rate research

Read More

Recent pretrained vision-language models have achieved impressive performance on cross-modal retrieval tasks in English. Their success, however, heavily depends on the availability of many annotated image-caption datasets for pretraining, where the t exts are not necessarily in English. Although we can utilize machine translation (MT) tools to translate non-English text to English, the performance still largely relies on MT's quality and may suffer from high latency problems in real-world applications. This paper proposes a new approach to learn cross-lingual cross-modal representations for matching images and their relevant captions in multiple languages. We seamlessly combine cross-lingual pretraining objectives and cross-modal pretraining objectives in a unified framework to learn image and text in a joint embedding space from available English image-caption data, monolingual and parallel corpus. We show that our approach achieves SOTA performance in retrieval tasks on two multimodal multilingual image caption benchmarks: Multi30k with German captions and MSCOCO with Japanese captions.
Multilingual question answering tasks typically assume that answers exist in the same language as the question. Yet in practice, many languages face both information scarcity---where languages have few reference articles---and information asymmetry-- -where questions reference concepts from other cultures. This work extends open-retrieval question answering to a cross-lingual setting enabling questions from one language to be answered via answer content from another language. We construct a large-scale dataset built on 40K information-seeking questions across 7 diverse non-English languages that TyDi QA could not find same-language answers for. Based on this dataset, we introduce a task framework, called Cross-lingual Open-Retrieval Question Answering (XOR QA), that consists of three new tasks involving cross-lingual document retrieval from multilingual and English resources. We establish baselines with state-of-the-art machine translation systems and cross-lingual pretrained models. Experimental results suggest that XOR QA is a challenging task that will facilitate the development of novel techniques for multilingual question answering. Our data and code are available at https://nlp.cs.washington.edu/xorqa/.
Spoken question answering (SQA) requires fine-grained understanding of both spoken documents and questions for the optimal answer prediction. In this paper, we propose novel training schemes for spoken question answering with a self-supervised traini ng stage and a contrastive representation learning stage. In the self-supervised stage, we propose three auxiliary self-supervised tasks, including utterance restoration, utterance insertion, and question discrimination, and jointly train the model to capture consistency and coherence among speech documents without any additional data or annotations. We then propose to learn noise-invariant utterance representations in a contrastive objective by adopting multiple augmentation strategies, including span deletion and span substitution. Besides, we design a Temporal-Alignment attention to semantically align the speech-text clues in the learned common space and benefit the SQA tasks. By this means, the training schemes can more effectively guide the generation model to predict more proper answers. Experimental results show that our model achieves state-of-the-art results on three SQA benchmarks. Our code will be publicly available after publication.
Current textual question answering (QA) models achieve strong performance on in-domain test sets, but often do so by fitting surface-level patterns, so they fail to generalize to out-of-distribution settings. To make a more robust and understandable QA system, we model question answering as an alignment problem. We decompose both the question and context into smaller units based on off-the-shelf semantic representations (here, semantic roles), and align the question to a subgraph of the context in order to find the answer. We formulate our model as a structured SVM, with alignment scores computed via BERT, and we can train end-to-end despite using beam search for approximate inference. Our use of explicit alignments allows us to explore a set of constraints with which we can prohibit certain types of bad model behavior arising in cross-domain settings. Furthermore, by investigating differences in scores across different potential answers, we can seek to understand what particular aspects of the input lead the model to choose the answer without relying on post-hoc explanation techniques. We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets. The results show that our model is more robust than the standard BERT QA model, and constraints derived from alignment scores allow us to effectively trade off coverage and accuracy.
Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is genera lly acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose Ernie-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that Ernie-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. The codes and pre-trained models will be made publicly available.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا