أظهرت التقدم المحرز الأخير في نماذج اللغة المستندة إلى المحولات الاحترام نجاحا كبيرا في تعلم التمثيل السياقي للنص.ومع ذلك، نظرا لتعقيد الاهتمام من الدرجة الثانية، يمكن لمعظم نماذج المحولات مسبقا التعامل مع النص القصير نسبيا.لا يزال يمثل تحديا عندما يتعلق الأمر بنمذة مستندات طويلة جدا.في هذا العمل، نقترح استخدام شبكة انتباه الرسوم البيانية أعلى نموذج المحولات مسبقا متوفرة لتعلم تضمين الوثائق.تتيح لنا شبكة انتباه الرسم البياني هذه الاستفادة من الهيكل الدلالي الرفيع المستوى للوثيقة.بالإضافة إلى ذلك، استنادا إلى نموذج وثيقة الرسم البياني لدينا، نقوم بتصميم استراتيجية تعليمية بسيطة بسيطة للتعبير عن نماذجنا بمقدار كبير من الكائنات الكبيرة.تجريبيا، نوضح فعالية نهجنا في تصنيف الوثائق ومهام استرجاع المستندات.
Recent progress in pretrained Transformer-based language models has shown great success in learning contextual representation of text. However, due to the quadratic self-attention complexity, most of the pretrained Transformers models can only handle relatively short text. It is still a challenge when it comes to modeling very long documents. In this work, we propose to use a graph attention network on top of the available pretrained Transformers model to learn document embeddings. This graph attention network allows us to leverage the high-level semantic structure of the document. In addition, based on our graph document model, we design a simple contrastive learning strategy to pretrain our models on a large amount of unlabeled corpus. Empirically, we demonstrate the effectiveness of our approaches in document classification and document retrieval tasks.
References used
https://aclanthology.org/
Existing sarcasm detection systems focus on exploiting linguistic markers, context, or user-level priors. However, social studies suggest that the relationship between the author and the audience can be equally relevant for the sarcasm usage and inte
External syntactic and semantic information has been largely ignored by existing neural coreference resolution models. In this paper, we present a heterogeneous graph-based model to incorporate syntactic and semantic structures of sentences. The prop
Several NLP tasks need the effective repre-sentation of text documents.Arora et al.,2017 demonstrate that simple weighted aver-aging of word vectors frequently outperformsneural models. SCDV (Mekala et al., 2017)further extends this from sentences to
Knowledge Graph Embeddings (KGEs) have been intensively explored in recent years due to their promise for a wide range of applications. However, existing studies focus on improving the final model performance without acknowledging the computational c
This paper describes our system for SemEval-2021 Task 4: Reading Comprehension of Abstract Meaning. To accomplish this task, we utilize the Knowledge-Enhanced Graph Attention Network (KEGAT) architecture with a novel semantic space transformation str