Do you want to publish a course? Click here

This research presents a new methodology for the development of a controller based on Artificial Neural Networks and Direct control method in order to obtain the maximum available energy from Solar Photovoltaic (PV) Energy systems under different a tmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for MPPT-ANN in order to track the Maximum Power Point of PV systems in Matlab/Simulink environment. The developed controller is based on Feed Forward Neural Network FFNN trained by Back-propagation algorithm of error to determine the optimal voltage operation of the system PV system at different atmospheric changes. This research also suggests, control algorithm based on the direct control method in order to determine the duty cycle, which used to control directly the operating of DCDC Voltage Converter, depending on a comparison of the difference between the output voltage of PV system and the optimal voltage output of the neural network. The developed controller MPPT-ANN based on a network FFNN, Characterized by fast speed to track of MPP point and achieve high efficiency for the PV system under the atmospheric changes. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed controller MPPT-ANN by achieving a better dynamic performance and high accuracy when tracking the MPP, compared with the use of the another PI-ANN controller based on artificial neural network and the conventional Proportional-Integral Controller, and compared with the use of the conventional MPPTP& O based on Perturb and Observe (P&O) technique under different atmospheric changes.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Fuzzy Logic Controller (FLC) for Maximum Power Point Tracking (MPPT), to control the duty cycle of DC-DC Voltage Converter, to achieve the photovolt aic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for FLC developed in Matlab/Simulink environment. The proposed model for the controller is based on the conventional Perturb and Observe (P&O) technique. Where, in similar to the conventional P&O technique, the changes in the Power and tension of photovoltaic power system, are considered as the input variables of the proposed controller, while the output variable is the change in the duty cycle. The main advantage of the developed controller FLC, based on the considering the change in the duty cycle has a Variable Step Size, and directly related to the changes in the power and tension of the Photovoltaic system. Which make it possible to overcome the problem of fixed Step Size in the change of the duty cycle in the conventional MPPT- P&O Controller based on P&O technique. The MPPT- P&O Fuzzy, works by a variable step size achieve a fast speed response and high efficiency for tracking the MPP point under sudden and rapidly varying atmospheric conditions, compared with the conventional MPPT- P&O. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed MPPT- P&O Fuzzy controller in tracking the MPP by achieving a better dynamic performance and high accuracy, compared with the use of the conventional MPPT- P&O under different atmospheric changes.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
Fuzzy logic control is used to connect a photovoltaic system to the electrical grid by using three phase fully controlled converter (inverter), This controller is going to track the maximum power point and inject the maximum available power from th e PV system to the grid by determining the trigger angle that must be applied on the switches: Linguistic variables are going to be chosen to determine the amount of change in the trigger angle of the inverter to track the maximum power.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا