Do you want to publish a course? Click here

Data augmentation and adversarial perturbation approaches have recently achieved promising results in solving the over-fitting problem in many natural language processing (NLP) tasks including sentiment classification. However, existing studies aimed to improve the generalization ability by augmenting the training data with synonymous examples or adding random noises to word embeddings, which cannot address the spurious association problem. In this work, we propose an end-to-end reinforcement learning framework, which jointly performs counterfactual data generation and dual sentiment classification. Our approach has three characteristics:1) the generator automatically generates massive and diverse antonymous sentences; 2) the discriminator contains a original-side sentiment predictor and an antonymous-side sentiment predictor, which jointly evaluate the quality of the generated sample and help the generator iteratively generate higher-quality antonymous samples; 3) the discriminator is directly used as the final sentiment classifier without the need to build an extra one. Extensive experiments show that our approach outperforms strong data augmentation baselines on several benchmark sentiment classification datasets. Further analysis confirms our approach's advantages in generating more diverse training samples and solving the spurious association problem in sentiment classification.
Following the increasing performance of neural machine translation systems, the paradigm of using automatically translated data for cross-lingual adaptation is now studied in several applicative domains. The capacity to accurately project annotations remains however an issue for sequence tagging tasks where annotation must be projected with correct spans. Additionally, when the task implies noisy user-generated text, the quality of translation and annotation projection can be affected. In this paper we propose to tackle multilingual sequence tagging with a new span alignment method and apply it to opinion target extraction from customer reviews. We show that provided suitable heuristics, translated data with automatic span-level annotation projection can yield improvements both for cross-lingual adaptation compared to zero-shot transfer, and data augmentation compared to a multilingual baseline.
Many crowdsourced NLP datasets contain systematic artifacts that are identified only after data collection is complete. Earlier identification of these issues should make it easier to create high-quality training and evaluation data. We attempt this by evaluating protocols in which expert linguists work in the loop' during data collection to identify and address these issues by adjusting task instructions and incentives. Using natural language inference as a test case, we compare three data collection protocols: (i) a baseline protocol with no linguist involvement, (ii) a linguist-in-the-loop intervention with iteratively-updated constraints on the writing task, and (iii) an extension that adds direct interaction between linguists and crowdworkers via a chatroom. We find that linguist involvement does not lead to increased accuracy on out-of-domain test sets compared to baseline, and adding a chatroom has no effect on the data. Linguist involvement does, however, lead to more challenging evaluation data and higher accuracy on some challenge sets, demonstrating the benefits of integrating expert analysis during data collection.
Commonsense is a quintessential human capacity that has been a core challenge to Artificial Intelligence since its inception. Impressive results in Natural Language Processing tasks, including in commonsense reasoning, have consistently been achieved with Transformer neural language models, even matching or surpassing human performance in some benchmarks. Recently, some of these advances have been called into question: so called data artifacts in the training data have been made evident as spurious correlations and shallow shortcuts that in some cases are leveraging these outstanding results. In this paper we seek to further pursue this analysis into the realm of commonsense related language processing tasks. We undertake a study on different prominent benchmarks that involve commonsense reasoning, along a number of key stress experiments, thus seeking to gain insight on whether the models are learning transferable generalizations intrinsic to the problem at stake or just taking advantage of incidental shortcuts in the data items. The results obtained indicate that most datasets experimented with are problematic, with models resorting to non-robust features and appearing not to be learning and generalizing towards the overall tasks intended to be conveyed or exemplified by the datasets.
This paper explores three simple data manipulation techniques (synthesis, augmentation, curriculum) for improving abstractive summarization models without the need for any additional data. We introduce a method of data synthesis with paraphrasing, a data augmentation technique with sample mixing, and curriculum learning with two new difficulty metrics based on specificity and abstractiveness. We conduct experiments to show that these three techniques can help improve abstractive summarization across two summarization models and two different small datasets. Furthermore, we show that these techniques can improve performance when applied in isolation and when combined.
Generating high quality question-answer pairs is a hard but meaningful task. Although previous works have achieved great results on answer-aware question generation, it is difficult to apply them into practical application in the education field. Thi s paper for the first time addresses the question-answer pair generation task on the real-world examination data, and proposes a new unified framework on RACE. To capture the important information of the input passage we first automatically generate (rather than extracting) keyphrases, thus this task is reduced to keyphrase-question-answer triplet joint generation. Accordingly, we propose a multi-agent communication model to generate and optimize the question and keyphrases iteratively, and then apply the generated question and keyphrases to guide the generation of answers. To establish a solid benchmark, we build our model on the strong generative pre-training model. Experimental results show that our model makes great breakthroughs in the question-answer pair generation task. Moreover, we make a comprehensive analysis on our model, suggesting new directions for this challenging task.
We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best re sults are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.
Transformers-based pretrained language models achieve outstanding results in many well-known NLU benchmarks. However, while pretraining methods are very convenient, they are expensive in terms of time and resources. This calls for a study of the impa ct of pretraining data size on the knowledge of the models. We explore this impact on the syntactic capabilities of RoBERTa, using models trained on incremental sizes of raw text data. First, we use syntactic structural probes to determine whether models pretrained on more data encode a higher amount of syntactic information. Second, we perform a targeted syntactic evaluation to analyze the impact of pretraining data size on the syntactic generalization performance of the models. Third, we compare the performance of the different models on three downstream applications: part-of-speech tagging, dependency parsing and paraphrase identification. We complement our study with an analysis of the cost-benefit trade-off of training such models. Our experiments show that while models pretrained on more data encode more syntactic knowledge and perform better on downstream applications, they do not always offer a better performance across the different syntactic phenomena and come at a higher financial and environmental cost.
Authorship attribution is the task of assigning an unknown document to an author from a set of candidates. In the past, studies in this field use various evaluation datasets to demonstrate the effectiveness of preprocessing steps, features, and model s. However, only a small fraction of works use more than one dataset to prove claims. In this paper, we present a collection of highly diverse authorship attribution datasets, which better generalizes evaluation results from authorship attribution research. Furthermore, we implement a wide variety of previously used machine learning models and show that many approaches show vastly different performances when applied to different datasets. We include pre-trained language models, for the first time testing them in this field in a systematic way. Finally, we propose a set of aggregated scores to evaluate different aspects of the dataset collection.
In this paper, we explore the task of automatically generating natural language descriptions of salient patterns in a time series, such as stock prices of a company over a week. A model for this task should be able to extract high-level patterns such as presence of a peak or a dip. While typical contemporary neural models with attention mechanisms can generate fluent output descriptions for this task, they often generate factually incorrect descriptions. We propose a computational model with a truth-conditional architecture which first runs small learned programs on the input time series, then identifies the programs/patterns which hold true for the given input, and finally conditions on *only* the chosen valid program (rather than the input time series) to generate the output text description. A program in our model is constructed from modules, which are small neural networks that are designed to capture numerical patterns and temporal information. The modules are shared across multiple programs, enabling compositionality as well as efficient learning of module parameters. The modules, as well as the composition of the modules, are unobserved in data, and we learn them in an end-to-end fashion with the only training signal coming from the accompanying natural language text descriptions. We find that the proposed model is able to generate high-precision captions even though we consider a small and simple space of module types.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا