Do you want to publish a course? Click here

Mitigating Data Scarceness through Data Synthesis, Augmentation and Curriculum for Abstractive Summarization

التخفيف من قطع البيانات من خلال تخليق البيانات، والتكبير والمناهج الدراسية لتلخيص التغذية

365   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper explores three simple data manipulation techniques (synthesis, augmentation, curriculum) for improving abstractive summarization models without the need for any additional data. We introduce a method of data synthesis with paraphrasing, a data augmentation technique with sample mixing, and curriculum learning with two new difficulty metrics based on specificity and abstractiveness. We conduct experiments to show that these three techniques can help improve abstractive summarization across two summarization models and two different small datasets. Furthermore, we show that these techniques can improve performance when applied in isolation and when combined.

References used
https://aclanthology.org/
rate research

Read More

Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible re quirement when applying summarization to new, niche domains. In this work, we introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner. WikiTransfer fine-tunes pretrained models on pseudo-summaries, produced from generic Wikipedia data, which contain characteristics of the target dataset, such as the length and level of abstraction of the desired summaries. WikiTransfer models achieve state-of-the-art, zero-shot abstractive summarization performance on the CNN-DailyMail dataset and demonstrate the effectiveness of our approach on three additional diverse datasets. These models are more robust to noisy data and also achieve better or comparable few-shot performance using 10 and 100 training examples when compared to few-shot transfer from other summarization datasets. To further boost performance, we employ data augmentation via round-trip translation as well as introduce a regularization term for improved few-shot transfer. To understand the role of dataset aspects in transfer performance and the quality of the resulting output summaries, we further study the effect of the components of our unsupervised fine-tuning data and analyze few-shot performance using both automatic and human evaluation.
Abstractive conversation summarization has received growing attention while most current state-of-the-art summarization models heavily rely on human-annotated summaries. To reduce the dependence on labeled summaries, in this work, we present a simple yet effective set of Conversational Data Augmentation (CODA) methods for semi-supervised abstractive conversation summarization, such as random swapping/deletion to perturb the discourse relations inside conversations, dialogue-acts-guided insertion to interrupt the development of conversations, and conditional-generation-based substitution to substitute utterances with their paraphrases generated based on the conversation context. To further utilize unlabeled conversations, we combine CODA with two-stage noisy self-training where we first pre-train the summarization model on unlabeled conversations with pseudo summaries and then fine-tune it on labeled conversations. Experiments conducted on the recent conversation summarization datasets demonstrate the effectiveness of our methods over several state-of-the-art data augmentation baselines.
تعرض المحاضرة شرح عن علم البيانات وعلاقته بعلم الإحصاء والتعلم الآلي وحالتين دراسيتين عن دور عالم البيانات في تصميم حلول تعتمد على استخراج المعرفة من حجم كبير من البيانات المتوفرة, كما يتم عرض أهم المهام في المؤتمرات العلمية التي يمكن المشاركة بها لطلاب المعلوماتية المهتمين بهذا المجال
Unsupervised Data Augmentation (UDA) is a semisupervised technique that applies a consistency loss to penalize differences between a model's predictions on (a) observed (unlabeled) examples; and (b) corresponding noised' examples produced via data au gmentation. While UDA has gained popularity for text classification, open questions linger over which design decisions are necessary and how to extend the method to sequence labeling tasks. In this paper, we re-examine UDA and demonstrate its efficacy on several sequential tasks. Our main contribution is an empirical study of UDA to establish which components of the algorithm confer benefits in NLP. Notably, although prior work has emphasized the use of clever augmentation techniques including back-translation, we find that enforcing consistency between predictions assigned to observed and randomly substituted words often yields comparable (or greater) benefits compared to these more complex perturbation models. Furthermore, we find that applying UDA's consistency loss affords meaningful gains without any unlabeled data at all, i.e., in a standard supervised setting. In short, UDA need not be unsupervised to realize much of its noted benefits, and does not require complex data augmentation to be effective.
Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training dataset s for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا