Do you want to publish a course? Click here

A Language Model-based Generative Classifier for Sentence-level Discourse Parsing

مصنف إنتاج نموذجي يعمل على تحليل خطاب مستوى الجملة

372   1   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Discourse segmentation and sentence-level discourse parsing play important roles for various NLP tasks to consider textual coherence. Despite recent achievements in both tasks, there is still room for improvement due to the scarcity of labeled data. To solve the problem, we propose a language model-based generative classifier (LMGC) for using more information from labels by treating the labels as an input while enhancing label representations by embedding descriptions for each label. Moreover, since this enables LMGC to make ready the representations for labels, unseen in the pre-training step, we can effectively use a pre-trained language model in LMGC. Experimental results on the RST-DT dataset show that our LMGC achieved the state-of-the-art F1 score of 96.72 in discourse segmentation. It further achieved the state-of-the-art relation F1 scores of 84.69 with gold EDU boundaries and 81.18 with automatically segmented boundaries, respectively, in sentence-level discourse parsing.



References used
https://aclanthology.org/
rate research

Read More

Arabic sentiment analysis research existing currently is very limited. While sentiment analysis has many applications in English, the Arabic language is still recognizing its early steps in this field. In this paper, we show an application on Arabic sentiment analysis by implementing a sentiment classification for Arabic tweets. The retrieved tweets are analyzed to provide their sentiments polarity (positive, or negative). Since, this data is collected from the social network Twitter; it has its importance for the Middle East region, which mostly speaks Arabic
Discourse analysis has long been known to be fundamental in natural language processing. In this research, we present our insight on discourse-level topic chain (DTC) parsing which aims at discovering new topics and investigating how these topics evo lve over time within an article. To address the lack of data, we contribute a new discourse corpus with DTC-style dependency graphs annotated upon news articles. In particular, we ensure the high reliability of the corpus by utilizing a two-step annotation strategy to build the data and filtering out the annotations with low confidence scores. Based on the annotated corpus, we introduce a simple yet robust system for automatic discourse-level topic chain parsing.
Document-level event extraction is critical to various natural language processing tasks for providing structured information. Existing approaches by sequential modeling neglect the complex logic structures for long texts. In this paper, we leverage the entity interactions and sentence interactions within long documents and transform each document into an undirected unweighted graph by exploiting the relationship between sentences. We introduce the Sentence Community to represent each event as a subgraph. Furthermore, our framework SCDEE maintains the ability to extract multiple events by sentence community detection using graph attention networks and alleviate the role overlapping issue by predicting arguments in terms of roles. Experiments demonstrate that our framework achieves competitive results over state-of-the-art methods on the large-scale document-level event extraction dataset.
Natural Language Inference (NLI) has garnered significant attention in recent years; however, the promise of applying NLI breakthroughs to other downstream NLP tasks has remained unfulfilled. In this work, we use the multiple-choice reading comprehen sion (MCRC) and checking factual correctness of textual summarization (CFCS) tasks to investigate potential reasons for this. Our findings show that: (1) the relatively shorter length of premises in traditional NLI datasets is the primary challenge prohibiting usage in downstream applications (which do better with longer contexts); (2) this challenge can be addressed by automatically converting resource-rich reading comprehension datasets into longer-premise NLI datasets; and (3) models trained on the converted, longer-premise datasets outperform those trained using short-premise traditional NLI datasets on downstream tasks primarily due to the difference in premise lengths.
This paper describes the system developed by the Laboratoire d'analyse statistique des textes for the Dravidian Language Identification (DLI) shared task of VarDial 2021. This task is particularly difficult because the materials consists of short You Tube comments, written in Roman script, from three closely related Dravidian languages, and a fourth category consisting of several other languages in varying proportions, all mixed with English. The proposed system is made up of a logistic regression model which uses as only features n-grams of characters with a maximum length of 5. After its optimization both in terms of the feature weighting and the classifier parameters, it ranked first in the challenge. The additional analyses carried out underline the importance of optimization, especially when the measure of effectiveness is the Macro-F1.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا