Do you want to publish a course? Click here

Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn(x)Mg(1-x)Br(3), K(2)Mn(x)Zn(1-x)F(4), and KMn(x)Zn(1-x)F(3) (x<0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r**2, 1/r, and constant (for three-, two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. The observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.
Inelastic neutron scattering was employed to study the crystal-field interaction in the strontium-doped rare-earth compounds R(x)Sr(1-x)CoO(3-z) (R=Pr, Nd, Ho, and Er). Particular emphasis is laid on the effect of oxygen deficiencies which naturally occur in the synthesis of these compounds. The observed energy spectra are found to be the result of a superposition of crystal fields with different nearest-neighbor oxygen coordination at the R sites. The experimental data are interpreted in terms of crystal-field parameters which behave in a consistent manner through the rare-earth series, thereby allowing a reliable extrapolation for rare-earth ions not considered in the present work.
Defects intentionally introduced into magnetic materials often have a profound effect on the physical properties. Specifically tailored neutron spectroscopic experiments can provide detailed information on both the local exchange interactions and the local distances between the magnetic atoms around the defects. This is demonstrated for manganese dimer excitations observed for the magnetically diluted three- and two-dimensional compounds KMn(x)Zn(1-x)F(3) and K(2)Mn(x)Zn(1-x)F(4), respectively. The resulting local exchange interactions deviate up to 10% from the average, and the local Mn-Mn distances are found to vary stepwise with increasing internal pressure due to the Mn/Zn substitution. Our analysis qualitatively supports the theoretically predicted decay of atomic displacements according to 1/r**2, 1/r, and constant (for three-, two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect.
We introduce a novel method for local structure determination with a spatial resolution of the order of 0.01 Angstroem. It can be applied to materials containing clusters of exchange-coupled magnetic atoms. We use neutron spectroscopy to probe the energies of the cluster excitations which are determined by the interatomic coupling strength J. Since for most materials J is related to the interatomic distance R through a linear relation dJ/dR={alpha} (for dR/R<<1), we can directly derive the local distance R from the observed excitation energies. This is exemplified for the mixed one-dimensional paramagnetic compound CsMnxMg1 xBr3 (x=0.05, 0.10) containing manganese dimers oriented along the hexagonal c-axis. Surprisingly, the resulting Mn-Mn distances R do not vary continuously with increasing internal pressure, but lock in at some discrete values.
Anisotropy effects can significantly control or modify the ground-state properties of magnetic systems. Yet the origin and the relative importance of the possible anisotropy terms is difficult to assess experimentally and often ambiguous. Here we propose a technique which allows a very direct distinction between single-ion and two-ion anisotropy effects. The method is based on high-resolution neutron spectroscopic investigations of magnetic cluster excitations. This is exemplified for manganese dimers and tetramers in the mixed compounds CsMnxMg1-xBr3 (0.05leqxleq0.40). Our experiments provide evidence for a pronounced anisotropy of the order of 3% of the dominant bilinear exchange interaction, and the anisotropy is dominated by the single-ion term. The detailed characterization of magnetic cluster excitations offers a convenient way to unravel anisotropy effects in any magnetic material.
Inelastic neutron scattering was employed to study the magnetic excitations of Mn3+ dimers in LaMn0.1Ga0.9O3. The nearest-neighbor interaction of Mn3+ ions is ferromagnetic in the basal (a,b)-plane, but antiferromagnetic along the c-direction, thus two different types of dimer excitations are simultaneously present in the experiments. From the observed energy spectra we derive Heisenberg-type exchange interactions Jab=0.210(4) meV and Jc=-0.285(5) meV as well as an axial anisotropy parameter D=0.036(6) meV. These parameters considerably differ from those derived for the isostructural parent compound LaMnO3 due to structural effects.
We present results of inelastic neutron scattering experiments performed for the compound Magnetic and neutron spectroscopic properties of the tetrameric nickel compound $[Mo_{12}O_{28}(mu_2-OH)_9(mu_3-OH)_3{Ni(H_2O)_3}_4] $cdot$ 13H_2O$, which is a molecular magnet with antiferromagnetically coupled Ni2+ ions forming nearly ideal tetrahedra in a diamagnetic molybdate matrix. The neutron spectroscopic data are analyzed together with high-field magnetization data (taken from the literature) which exhibit four steps at non-equidistant field intervals. The experimental data can be excellently described by antiferromagnetic Heisenberg-type exchange interactions as well as an axial single-ion anisotropy within a distorted tetrahedron of Ni2+ ions characterized by X-ray single-crystal diffraction. Our analysis contrasts to recently proposed models which are based on the existence of extremely large biquadratic (and three-ion) exchange interactions and/or on a strong field dependence of the Heisenberg coupling parameters.
435 - A. Furrer 2007
Neutron crystal-field spectroscopy experiments in the Y- and La-type high-temperature superconductors HoBa2Cu3O6.56, HoBa2Cu4O8, and La1.81Sr0.15Ho0.04CuO4 are reviewed. By this bulk-sensitive technique, information on the gap function is obtained from the relaxation behavior of crystal-field transitions associated with the Ho3+ ions which sit as local probes close to the superconducting copper-oxide planes. The relaxation data exhibit a peculiar change from a convex to a concave shape between the superconducting transition temperature Tc and the pseudogap temperature T* which can only be modelled satisfactorily if the gap function of predominantly d-wave symmetry includes an s-wave component of the order of 20-25%, independent of the doping level. Moreover, our results are compatible with an unusual temperature dependence of the gap function in the pseudogap region (Tc<T<T*), i.e., a breakup of the Fermi surface into disconnected arcs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا