Do you want to publish a course? Click here

Direct observation of local Mn-Mn distances in the paramagnetic compound CsMnxMg1-xBr3

98   0   0.0 ( 0 )
 Added by Albert Furrer
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a novel method for local structure determination with a spatial resolution of the order of 0.01 Angstroem. It can be applied to materials containing clusters of exchange-coupled magnetic atoms. We use neutron spectroscopy to probe the energies of the cluster excitations which are determined by the interatomic coupling strength J. Since for most materials J is related to the interatomic distance R through a linear relation dJ/dR={alpha} (for dR/R<<1), we can directly derive the local distance R from the observed excitation energies. This is exemplified for the mixed one-dimensional paramagnetic compound CsMnxMg1 xBr3 (x=0.05, 0.10) containing manganese dimers oriented along the hexagonal c-axis. Surprisingly, the resulting Mn-Mn distances R do not vary continuously with increasing internal pressure, but lock in at some discrete values.



rate research

Read More

We perform a theoretical study, using {it ab initio} total energy density-functional calculations, of the effects of disorder on the $Mn-Mn$ exchange interactions for $Ga_{1-x}Mn_xAs$ diluted semiconductors. For a 128 atoms supercell, we consider a variety of configurations with 2, 3 and 4 Mn atoms, which correspond to concentrations of 3.1%, 4.7%, and 6.3%, respectively. In this way, the disorder is intrinsically considered in the calculations. Using a Heisenberg Hamiltonian to map the magnetic excitations, and {it ab initio} total energy calculations, we obtain the effective $JMn$, from first ($n=1$) all the way up to sixth ($n=6$) neighbors. Calculated results show a clear dependence in the magnitudes of the $JMn$ with the Mn concentration $x$. Also, configurational disorder and/or clustering effects lead to large dispersions in the Mn-Mn exchange interactions, in the case of fixed Mn concentration. Moreover, theoretical results for the ground-state total energies for several configurations indicate the importance of a proper consideration of disorder in treating temperature and annealing effects.
214 - E. K. Liu , W. Zhu , L. Feng 2010
It is shown that a temperature window between the Curie temperatures of martensite and austenite phases around the room temperature can be obtained by a vacancy-tuning strategy in Mn-poor Mn1-xCoGe alloys (0 <= x <= 0.050). Based on this, a martensitic transformation from paramagnetic austenite to ferromagnetic martensite with a large magnetization difference can be realized in this window. This gives rise to a magnetic-field-induced martensitic transformation and a large magnetocaloric effect in the Mn1-xCoGe system. The decrease of the transformation temperature and of the thermal hysteresis of the transformation, as well as the stable Curie temperatures of martensite and austenite, are discussed on the basis of the Mn-poor Co-vacancy structure and the corresponding valence-electron concentration.
The static and dynamic magnetic properties of tetragonally distorted Mn--Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5~T using SQUID magnetometry. For the pure Mn$_{1.6}$Ga film, the saturation magnetisation is 0.36~MA/m and the coercivity is 0.29~T. Partial substitution of Mn by Co results in Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$. The saturation magnetisation of those films drops to 0.2~MA/m and the coercivity is increased to 1~T. Time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn--Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125~GHz with a Gilbert damping, $alpha$, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5~T, corresponding to an effective anisotropy density of 0.81~MJ/m$^3$. Given the large anisotropy field of the Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ film, pulsed magnetic fields up to 60~T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in--plane magnetisation curve, the effective anisotropy energy density for Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ is determined to be 1.23~MJ/m$^3$.
Layered perovskites $A_3M_2$O$_7$ are known to exhibit the so-called hybrid improper ferroelectricity. Despite experimentally confirmed cases (e.g. nonmagnetic $M$=Ti and Sn), the ferroelectricity in magnetic Ca$_3$Mn$_2$O$_7$ remains a puzzle. Here, the structural, ferroelectric, magnetoelectric, and optical properties of Ca$_3$Mn$_2$O$_7$ are systematically investigated. Switchable polarization is directly measured, demonstrating its ferroelectricity. In addition, magnetoelectric response is also evidenced, implying the coupling between magnetism and ferroelectricity. Furthermore, strong visible light absorption is observed, which can be understood from its electronic structure. Its direct and appropriate band gap, as well as wide conducting bands, makes Ca$_3$Mn$_2$O$_7$ a potential candidate for ferroelectric photoelectric applications.
The magnetic properties of the ferromagnetic semiconductor In0.98Mn0.02As were characterized by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The Mn exhibits an atomic-like L2,3 absorption spectrum that indicates that the 3d states are highly localized. In addition, a large dichroism at the Mn L2,3 edge was observed from 5-300 K at an applied field of 2T. A calculated spectrum assuming atomic Mn2+ yields the best agreement with the experimental InMnAs spectrum. A comparison of the dichroism spectra of MnAs and InMnAs show clear differences suggesting that the ferromagnetism observed in InMnAs is not due to hexagonal MnAs clusters. The temperature dependence of the dichroism indicates the presence of two ferromagnetic species, one with a transition temperature of 30 K and another with a transition temperature in excess of 300 K. The dichroism spectra are consistent with the assignment of the low temperature species to random substitutional Mn and the high temperature species to Mn near-neighbor pairs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا