Do you want to publish a course? Click here

Recent work in simultaneous machine translation is often trained with conventional full sentence translation corpora, leading to either excessive latency or necessity to anticipate as-yet-unarrived words, when dealing with a language pair whose word orders significantly differ. This is unlike human simultaneous interpreters who produce largely monotonic translations at the expense of the grammaticality of a sentence being translated. In this paper, we thus propose an algorithm to reorder and refine the target side of a full sentence translation corpus, so that the words/phrases between the source and target sentences are aligned largely monotonically, using word alignment and non-autoregressive neural machine translation. We then train a widely used wait-k simultaneous translation model on this reordered-and-refined corpus. The proposed approach improves BLEU scores and resulting translations exhibit enhanced monotonicity with source sentences.
This paper proposes a novel architecture, Cross Attention Augmented Transducer (CAAT), for simultaneous translation. The framework aims to jointly optimize the policy and translation models. To effectively consider all possible READ-WRITE simultaneou s translation action paths, we adapt the online automatic speech recognition (ASR) model, RNN-T, but remove the strong monotonic constraint, which is critical for the translation task to consider reordering. To make CAAT work, we introduce a novel latency loss whose expectation can be optimized by a forward-backward algorithm. We implement CAAT with Transformer while the general CAAT architecture can also be implemented with other attention-based encoder-decoder frameworks. Experiments on both speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks show that CAAT achieves significantly better latency-quality trade-offs compared to the state-of-the-art simultaneous translation approaches.
In this paper, we study the possibility of unsupervised Multiple Choices Question Answering (MCQA). From very basic knowledge, the MCQA model knows that some choices have higher probabilities of being correct than others. The information, though very noisy, guides the training of an MCQA model. The proposed method is shown to outperform the baseline approaches on RACE and is even comparable with some supervised learning approaches on MC500.
Unfair stereotypical biases (e.g., gender, racial, or religious biases) encoded in modern pretrained language models (PLMs) have negative ethical implications for widespread adoption of state-of-the-art language technology. To remedy for this, a wide range of debiasing techniques have recently been introduced to remove such stereotypical biases from PLMs. Existing debiasing methods, however, directly modify all of the PLMs parameters, which -- besides being computationally expensive -- comes with the inherent risk of (catastrophic) forgetting of useful language knowledge acquired in pretraining. In this work, we propose a more sustainable modular debiasing approach based on dedicated debiasing adapters, dubbed ADELE. Concretely, we (1) inject adapter modules into the original PLM layers and (2) update only the adapters (i.e., we keep the original PLM parameters frozen) via language modeling training on a counterfactually augmented corpus. We showcase ADELE, in gender debiasing of BERT: our extensive evaluation, encompassing three intrinsic and two extrinsic bias measures, renders ADELE, very effective in bias mitigation. We further show that -- due to its modular nature -- ADELE, coupled with task adapters, retains fairness even after large-scale downstream training. Finally, by means of multilingual BERT, we successfully transfer ADELE, to six target languages.
Multi-hop QA requires the machine to answer complex questions through finding multiple clues and reasoning, and provide explanatory evidence to demonstrate the machine's reasoning process. We propose Relation Extractor-Reader and Comparator (RERC), a three-stage framework based on complex question decomposition. The Relation Extractor decomposes the complex question, and then the Reader answers the sub-questions in turn, and finally the Comparator performs numerical comparison and summarizes all to get the final answer, where the entire process itself constitutes a complete reasoning evidence path. In the 2WikiMultiHopQA dataset, our RERC model has achieved the state-of-the-art performance, with a winning joint F1 score of 53.58 on the leaderboard. All indicators of our RERC are close to human performance, with only 1.95 behind the human level in F1 score of support fact. At the same time, the evidence path provided by our RERC framework has excellent readability and faithfulness.
Style is an integral part of natural language. However, evaluation methods for style measures are rare, often task-specific and usually do not control for content. We propose the modular, fine-grained and content-controlled similarity-based STyle Eva Luation framework (STEL) to test the performance of any model that can compare two sentences on style. We illustrate STEL with two general dimensions of style (formal/informal and simple/complex) as well as two specific characteristics of style (contrac'tion and numb3r substitution). We find that BERT-based methods outperform simple versions of commonly used style measures like 3-grams, punctuation frequency and LIWC-based approaches. We invite the addition of further tasks and task instances to STEL and hope to facilitate the improvement of style-sensitive measures.
This paper investigates continual learning for semantic parsing. In this setting, a neural semantic parser learns tasks sequentially without accessing full training data from previous tasks. Direct application of the SOTA continual learning algorithm s to this problem fails to achieve comparable performance with re-training models with all seen tasks because they have not considered the special properties of structured outputs yielded by semantic parsers. Therefore, we propose TotalRecall, a continual learning method designed for neural semantic parsers from two aspects: i) a sampling method for memory replay that diversifies logical form templates and balances distributions of parse actions in a memory; ii) a two-stage training method that significantly improves generalization capability of the parsers across tasks. We conduct extensive experiments to study the research problems involved in continual semantic parsing and demonstrate that a neural semantic parser trained with TotalRecall achieves superior performance than the one trained directly with the SOTA continual learning algorithms and achieve a 3-6 times speedup compared to re-training from scratch.
Much recent work in NLP has documented dataset artifacts, bias, and spurious correlations between input features and output labels. However, how to tell which features have spurious'' instead of legitimate correlations is typically left unspecified. In this work we argue that for complex language understanding tasks, all simple feature correlations are spurious, and we formalize this notion into a class of problems which we call competency problems. For example, the word amazing'' on its own should not give information about a sentiment label independent of the context in which it appears, which could include negation, metaphor, sarcasm, etc. We theoretically analyze the difficulty of creating data for competency problems when human bias is taken into account, showing that realistic datasets will increasingly deviate from competency problems as dataset size increases. This analysis gives us a simple statistical test for dataset artifacts, which we use to show more subtle biases than were described in prior work, including demonstrating that models are inappropriately affected by these less extreme biases. Our theoretical treatment of this problem also allows us to analyze proposed solutions, such as making local edits to dataset instances, and to give recommendations for future data collection and model design efforts that target competency problems.
Reproducible benchmarks are crucial in driving progress of machine translation research. However, existing machine translation benchmarks have been mostly limited to high-resource or well-represented languages. Despite an increasing interest in low-r esource machine translation, there are no standardized reproducible benchmarks for many African languages, many of which are used by millions of speakers but have less digitized textual data. To tackle these challenges, we propose AfroMT, a standardized, clean, and reproducible machine translation benchmark for eight widely spoken African languages. We also develop a suite of analysis tools for system diagnosis taking into account the unique properties of these languages. Furthermore, we explore the newly considered case of low-resource focused pretraining and develop two novel data augmentation-based strategies, leveraging word-level alignment information and pseudo-monolingual data for pretraining multilingual sequence-to-sequence models. We demonstrate significant improvements when pretraining on 11 languages, with gains of up to 2 BLEU points over strong baselines. We also show gains of up to 12 BLEU points over cross-lingual transfer baselines in data-constrained scenarios. All code and pretrained models will be released as further steps towards larger reproducible benchmarks for African languages.
In this paper, we introduce the task of political coalition signal prediction from text, that is, the task of recognizing from the news coverage leading up to an election the (un)willingness of political parties to form a government coalition. We dec ompose our problem into two related, but distinct tasks: (i) predicting whether a reported statement from a politician or a journalist refers to a potential coalition and (ii) predicting the polarity of the signal -- namely, whether the speaker is in favour of or against the coalition. For this, we explore the benefits of multi-task learning and investigate which setup and task formulation is best suited for each sub-task. We evaluate our approach, based on hand-coded newspaper articles, covering elections in three countries (Ireland, Germany, Austria) and two languages (English, German). Our results show that the multi-task learning approach can further improve results over a strong monolingual transfer learning baseline.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا