التحيزات النمطية غير العادلة (على سبيل المثال، التحيزات الجنسانية أو العنصرية أو الدينية) ترميز نماذج اللغة الحديثة المحددة مسبقا (PLMS) لها آثار أخلاقية سلبية على الاعتماد الواسع النطاق لتكنولوجيا اللغات الحديثة. لعلاج ذلك، تم تقديم مجموعة واسعة من تقنيات المساواة مؤخرا لإزالة هذه التحيزات النمطية من PLMS. ومع ذلك، فإن طرق الدخل الحالية، ومع ذلك، قم بتعديل جميع معلمات PLMS مباشرة، والتي - إلى جانب كونها باهظة الثمن - مع خطر الكامنة من (كارثي) نسيان المعرفة اللغوية المفيدة المكتسبة في الاحتجاج. في هذا العمل، نقترح نهجا أكثر استدامة للدوائر على أساس محولات Deviasing المخصصة، التي دبلها أديل. بشكل ملموس، نحن (1) وحدات محول حقن في طبقات PLM الأصلية و (2) تحديث المحولات فقط (أي ونحن نعرض أديل، في الدخل الجنساني من BERT: تقييمنا الواسع، يشمل ثلاثة تدابير محلية خارجية ومثيرة للخدمة الخارجية، مما يجعل أديل، فعالة للغاية في تخفيف التحيز. نوضح كذلك - نظرا لطبيعتها المعيارية - أديل، إلى جانب محولات المهام، تحتفظ بالإنصاف حتى بعد التدريب على النمو النطاق واسع النطاق. وأخيرا، عن طريق بيرت متعددة اللغات، نجحنا في نقل أديل بنجاح إلى ست لغات مستهدفة.
Unfair stereotypical biases (e.g., gender, racial, or religious biases) encoded in modern pretrained language models (PLMs) have negative ethical implications for widespread adoption of state-of-the-art language technology. To remedy for this, a wide range of debiasing techniques have recently been introduced to remove such stereotypical biases from PLMs. Existing debiasing methods, however, directly modify all of the PLMs parameters, which -- besides being computationally expensive -- comes with the inherent risk of (catastrophic) forgetting of useful language knowledge acquired in pretraining. In this work, we propose a more sustainable modular debiasing approach based on dedicated debiasing adapters, dubbed ADELE. Concretely, we (1) inject adapter modules into the original PLM layers and (2) update only the adapters (i.e., we keep the original PLM parameters frozen) via language modeling training on a counterfactually augmented corpus. We showcase ADELE, in gender debiasing of BERT: our extensive evaluation, encompassing three intrinsic and two extrinsic bias measures, renders ADELE, very effective in bias mitigation. We further show that -- due to its modular nature -- ADELE, coupled with task adapters, retains fairness even after large-scale downstream training. Finally, by means of multilingual BERT, we successfully transfer ADELE, to six target languages.
References used
https://aclanthology.org/
Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language inst
Strategies for improving the training and prediction quality of weakly supervised machine learning models vary in how much they are tailored to a specific task or integrated with a specific model architecture. In this work, we introduce Knodle, a sof
Specialized number representations in NLP have shown improvements on numerical reasoning tasks like arithmetic word problems and masked number prediction. But humans also use numeracy to make better sense of world concepts, e.g., you can seat 5 peopl
Extracting relations across large text spans has been relatively underexplored in NLP, but it is particularly important for high-value domains such as biomedicine, where obtaining high recall of the latest findings is crucial for practical applicatio
We present a fast and scalable architecture called Explicit Modular Decomposition (EMD), in which we incorporate both classification-based and extraction-based methods and design four modules (for clas- sification and sequence labelling) to jointly e