Do you want to publish a course? Click here

We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each stars absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter plate that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.
MilkyWay@home is a volunteer computing project that allows people from every country in the world to volunteer their otherwise idle processors to Milky Way research. Currently, more than 25,000 people (150,000 since November 9, 2007) contribute about half a PetaFLOPS of computing power to our project. We currently run two types of applications: one application fits the spatial density profile of tidal streams using statistical photometric parallax, and the other application finds the N-body simulation parameters that produce tidal streams that best match the measured density profile of known tidal streams. The stream fitting application is well developed and is producing published results. The Sagittarius dwarf leading tidal tail has been fit, and the algorithm is currently running on the trailing tidal tail and bifurcated pieces. We will soon have a self-consistent model for the density of the smooth component of the stellar halo and the largest tidal streams. The $N$-body application has been implemented for fitting dwarf galaxy progenitor properties only, and is in the testing stages. We use an Earth-Mover Distance method to measure goodness-of-fit for density of stars along the tidal stream. We will add additional spatial dimensions as well as kinematic measures in a piecemeal fashion, with the eventual goal of fitting the orbit and parameters of the Milky Way potential (and thus the density distribution of dark matter) using multiple tidal streams.
85 - Heidi Jo Newberg 2014
In determining the distances to stars within the Milky Way galaxy, one often uses photometric or spectroscopic parallax. In these methods, the type of each individual star is determined, and the absolute magnitude of that star type is compared with the measured apparent magnitude to determine individual distances. In this article, we define the term statistical photometric parallax, in which statistical knowledge of the absolute magnitudes of stellar populations is used to determine the underlying density distributions of those stars. This technique has been used to determine the density distribution of the Milky Way stellar halo and its component tidal streams, using very large samples of stars from the Sloan Digital Sky Survey. Most recently, the volunteer computing platform MilkyWay@home has been used to find the best fit model parameters for the density of these halo stars.
We present a census of the 12,060 spectra of blue objects ($(g-r)_0<-0.25$) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10,856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise (S/N), and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf - M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179 QSOs, and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc. for each classification. Future surveys will be able to use templates similar to stars in each of the classes we identify to classify blue stars, including rare types, automatically.
We quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Veron-Cetty & Veron Catalog of Quasars. Although the majority of the sources are from the Veron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measureable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu, Ma, & Zhou (2011), and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. We average the proper motions of 158,106 extragalactic objects in bins of 3x3 degrees and present a table of proper motion corrections.
We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey (SDSS) data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading Sgr streams position, direction, and width for 15 stripes in the North Galactic Cap, and 3 stripes in the South Galactic Cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (North) tidal tail is consistent with recent triaxial and axisymmetric halo model simulations. The density along the stream is roughly consistent common disruption models in the North, but possibly not in the South. We explore the possibility that one or more of the dominant Sgr streams has been mis-identified, and that one or more of the `bifurcated pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and `bifurcated tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant Southern stream and the `bifurcated stream in the North. In the North Galactic Cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r_0 = 6.73. The Southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the North, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous Milkyway@home volunteer computing platform.
A new moving group comprising at least four Blue Horizontal Branch (BHB) stars is identified at (l,b) = (65 deg, 48 deg). The horizontal branch at g0=18.9 magnitude implies a distance of 50 kpc from the Sun. The heliocentric radial velocity is RV = -157 +/- 4 km/s, corresponding to V(gsr) = -10 km/s; the dispersion in line-of-sight velocity is consistent with the instrumental errors for these stars. The mean metallicity of the moving group is [Fe/H] approximately -2.4, which is significantly more metal poor than the stellar spheroid. We estimate that the BHB stars in the outer halo have a mean metallicity of [Fe/H] = -2.0, with a wide scatter and a distribution that does not change much as a function of distance from the Sun. We explore the systematics of SDSS DR7 surface gravity metallicity determinations for faint BHB stars, and present a technique for estimating the significance of clumps discovered in multidimensional data. This moving group cannot be distinguished in density, and highlights the need to collect many more spectra of Galactic stars to unravel the merger history of the Galaxy.
We show that the Sagittarius dwarf tidal stream can be traced with very red K/M-giant stars selected from SDSS photometry. A subset of these stars are spectroscopically confirmed with SEGUE and SDSS spectra, and the distance scale of 2MASS and SDSS M giants is calibrated to the RR Lyrae distance scale. The absolute g band magnitude of the K/M-giant stars at the tip of the giant branch is M_g=-1.0. The line-of-sight velocities of the M giant and BHB stars that are spatially coincident with the Sgr dwarf tidal stream are consistent with those of previous authors, reinforcing the need for new models that can explain all of the Sgr tidal debris stream observations. We estimate stellar densities along the tidal tails that can be used to help constrain future models. The K/M-giant, BHB, and F-turnoff stars in the lower surface brightness tidal stream that is adjacent to the main leading Sgr dwarf tidal tail have velocities and metallicities that are similar to those of the stars in the leading tidal tail. The ratio of K/M giants to BHBs and BHBs to F-turnoff stars are also similar for both branches of the leading tidal tail. We show that there is an additional low-metallicity tidal stream near the Sgr trailing tidal tail.
We tested the effectiveness on learning of hands-on, night-time laboratories that challenged student misconceptions in a non-major introductory astronomy class at Rensselaer Polytechnic Institute. We present a new assessment examination used to assess learning in this study. We were able to increase learning, at the 8.0 sigma level, on one of the moon phase objectives that was addressed in a cloudy night activity. There is weak evidence of some improvement on a broader range of learning objectives. We show evidence that the overall achievement levels of the four sections of the class is correlated with the amount of clear whether the sections had for observing, even though the learning objectives were addressed primarily in activities that did not require clear skies. This last result should be confirmed with future studies. We describe our first attempt to cycle the students through different activity stations in an attempt to handle 18 students at a time in the laboratories, and lessons learned from this.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا