Do you want to publish a course? Click here

Effect of Night Laboratories on Learning Objectives for a Non-Major Astronomy Class

259   0   0.0 ( 0 )
 Added by Heidi Newberg
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We tested the effectiveness on learning of hands-on, night-time laboratories that challenged student misconceptions in a non-major introductory astronomy class at Rensselaer Polytechnic Institute. We present a new assessment examination used to assess learning in this study. We were able to increase learning, at the 8.0 sigma level, on one of the moon phase objectives that was addressed in a cloudy night activity. There is weak evidence of some improvement on a broader range of learning objectives. We show evidence that the overall achievement levels of the four sections of the class is correlated with the amount of clear whether the sections had for observing, even though the learning objectives were addressed primarily in activities that did not require clear skies. This last result should be confirmed with future studies. We describe our first attempt to cycle the students through different activity stations in an attempt to handle 18 students at a time in the laboratories, and lessons learned from this.



rate research

Read More

In its most general form, a `secret objective is any inconsistency between the experimental reality and the information provided to students prior to starting work on an experiment. Students are challenged to identify the secret objectives and then given freedom to explore and understand the experiment, thus encouraging and facilitating genuine inquiry elements in introductory laboratory courses. Damping of a simple pendulum is used as a concrete example to demonstrate how secret objectives can be included. We also discuss the implications of the secret objectives method and how this can provide a link between the concepts of problem based learning and inquiry style labs.
Physics Education Research frequently investigates what students studying physics do on small time scales (e.g. single courses, observations within single courses), or post-education time scales (e.g., what jobs do physics majors get?) but there is little research into how students get from the beginning to the end of a physics degree. Our work attempts to visualize students paths through the physics major, and quantitatively describe the students who take physics courses, receive physics degrees, and change degree paths into and out of the physics program at Michigan State University.
A simple experimental setup for measuring the Plancks constant, using Landauer quantization of the conductance between touching gold wires, is described. It consists of two gold wires with thickness of 0.5 mm and 1.5 cm length, and an operational amplifier. The setup costs less than $30 and can be realized in every teaching laboratory in two weeks. The usage of oscilloscope is required.
The NASA/IPAC Teacher Archive Research Program (NITARP) provides a year-long authentic astronomy research project by partnering a research astronomer with small groups of educators. NITARP has worked with a total of 103 educators since 2005. In this paper, surveys are explored that were obtained from 74 different educators, at up to four waypoints during the course of 13 months, from the class of 2010 through the class of 2017; those surveys reveal how educator participants describe the major changes and outcomes in themselves fostered by NITARP. Three-quarters of the educators self-report some or major changes in their understanding of the nature of science. The program provides educators with experience collaborating with astronomers and other educators, and forges a strong link to the astronomical research community; the NITARP community of practice encourages and reinforces these linkages. During the experience, educators get comfortable with learning complex new concepts, with ~40% noting in their surveys that their approach to learning has changed. Educators are provided opportunities for professional growth; at least 12% have changed career paths substantially in part due to the program, and 14% report that the experience was life changing. At least 60% express a desire to include richer, more authentic science activities in their classrooms. This work illuminates what benefits the program brings to its participants; the NITARP approach could be mirrored in similar professional development (PD) programs in other STEM subjects.
We present an investigation into the interdisciplinary role of physics in a physics-for-non-physicists course at Pomona College. This work is guided by prior research into introductory physics for life-science (IPLS) courses, but attends to significant differences in the scope and context of this course. We interviewed enrolled students, physics professors, and professors from non-physics disciplines to explore the function of this course and the role of physics in the education of non-physics-science students. Interviews were audio recorded and transcribed, then analyzed to identify emergent themes. These themes outline the authentic physics, including content knowledge and other, broader learning objectives, that play an important and distinct role in the science education of enrolled students. Stakeholders generally align in their emphasis of interdisciplinary relevance with some divergence in the specific articulation of that idea. The differences can be understood through the stakeholders distinct areas of expertise, with non-physics professors expressing value through relevance to their discipline and physics professors focusing on essential aspects of physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا