Do you want to publish a course? Click here

Census of blue stars in SDSS DR8

113   0   0.0 ( 0 )
 Added by Heidi Newberg
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a census of the 12,060 spectra of blue objects ($(g-r)_0<-0.25$) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10,856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise (S/N), and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf - M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179 QSOs, and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc. for each classification. Future surveys will be able to use templates similar to stars in each of the classes we identify to classify blue stars, including rare types, automatically.



rate research

Read More

84 - A. Hirv , J. Pelt , E. Saar 2016
We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of < 11 member groups; the alignment increases with environmental density and luminosity. We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.
The existence of blue straggler stars (BSSs) in dwarf spheroidal galaxies (dSphs) is still an open question. In fact, many BSS candidates have been observed in the Local Group dSphs, but it is unclear whether they are real BSSs or young stars. Shedding light on the nature of these BSS candidates is crucial, in order to understand the star formation history of dSphs. In this paper, we consider BSS candidates in Sculptor and Fornax. In Fornax there are strong hints that the BSS population is contaminated by young stars, whereas in Sculptor there is no clear evidence of recent star formation. We derive the radial and luminosity distribution of BSS candidates from wide field imaging data extending beyond the nominal tidal radius of these galaxies. The observations are compared with the radial distribution of BSSs expected from dynamical simulations. In Sculptor the radial distribution of BSS candidates is consistent with that of red horizontal branch (RHB) stars and is in agreement with theoretical expectations for BSSs generated via mass transfer in binaries. On the contrary, in Fornax the radial distribution of BSS candidates is more concentrated than that of all the considered stellar populations. This result supports the hypothesis that most of BSS candidates in Fornax are young stars and is consistent with previous studies.
We identify six new CEMP stars ([C/Fe]>+0.7 and [Fe/H]< -1.8) and another seven likely candidates within the APOGEE database following Data Release 12. These stars have chemical compositions typical of metal-poor halo stars, e.g., mean [$alpha$/Fe] = +0.24$pm$0.24, based on the ASPCAP pipeline results. A lack of heavy element spectral lines impedes further sub-classification of these CEMP stars, however, based on radial velocity scatter, we predict most are not CEMP-s stars which are typically found in binary systems. Only one object, 2M15312547+4220551, may be in a binary since it exhibits a scatter in its radial velocity of 1.7 $pm$0.6 km s$^{-1}$ based on three visits over a 25.98 day baseline. Optical observations are now necessary to confirm the stellar parameters and low metallicities of these stars, to determine the heavy-element abundance ratios and improve the precision in the derived abundances, and to examine their CEMP sub-classifications.
We describe redMaPPer, a new red-sequence cluster finder specifically designed to make optimal use of ongoing and near-future large photometric surveys. The algorithm has multiple attractive features: (1) It can iteratively self-train the red-sequence model based on minimal spectroscopic training sample, an important feature for high redshift surveys; (2) It can handle complex masks with varying depth; (3) It produces cluster-appropriate random points to enable large-scale structure studies; (4) All clusters are assigned a full redshift probability distribution P(z); (5) Similarly, clusters can have multiple candidate central galaxies, each with corresponding centering probabilities; (6) The algorithm is parallel and numerically efficient: it can run a Dark Energy Survey-like catalog in ~500 CPU hours; (7) The algorithm exhibits excellent photometric redshift performance, the richness estimates are tightly correlated with external mass proxies, and the completeness and purity of the corresponding catalogs is superb. We apply the redMaPPer algorithm to ~10,000 deg^2 of SDSS DR8 data, and present the resulting catalog of ~25,000 clusters over the redshift range 0.08<z<0.55. The redMaPPer photometric redshifts are nearly Gaussian, with a scatter sigma_z ~ 0.006 at z~0.1, increasing to sigma_z~0.02 at z~0.5 due to increased photometric noise near the survey limit. The median value for |Delta z|/(1+z) for the full sample is 0.006. The incidence of projection effects is low (<=5%). Detailed performance comparisons of the redMaPPer DR8 cluster catalog to X-ray and SZ catalogs are presented in a companion paper (Rozo & Rykoff 2014).
Although Blue Horizontal Branch (BHB) stars are commonly used to trace halo substructure, the stars bluer than (g-r)<-0.3 are ignored due to the difficulty in determining their absolute magnitudes. The blue extention of the horizontal branch (HBX) includes BHB tail stars and Extreme Horizontal Branch (EHB) stars. We present a method for identifying HBX stars in the field, using spectra and photometry from the Sloan Digital Sky Survey Data Release 14 (SDSS DR14). We derive an estimate for the absolute magnitudes of BHB tail and EHB stars as a function of color, and use this relationship to calculate distances. We identify an overdensity of HBX stars that appears to trace the northern end of the Hercules-Aquila Cloud (HAC). We identify three stars that are likely part of a tidal stream, but this is not enough stars to explain the observed overdensity. Combining SDSS data with Gaia DR2 proper motions allows us to show that the orbits of the majority of the HBX stars in the overdensity are on high eccentricity orbits similar to those in the Virgo Radial Merger/Gaia-Enceladus/Gaia Sausage structure, and that the overdensity of high eccentricity orbits extends all the way to the Virgo Overdensity. We use stellar kinematics to separate the HBX stars into disk stars andhalo stars. The halo stars are primarily on highly eccentric (radial) orbits. The fraction of HBX stars that are EHBs is highest in the disk population and lowest in the low eccentricity halo stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا