Do you want to publish a course? Click here

Estimation of distances to stars with stellar parameters from LAMOST

158   0   0.0 ( 0 )
 Added by Jeffrey Carlin
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each stars absolute magnitude. This technique is tailored specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter plate that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and target selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.



rate research

Read More

We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters T$_{rm eff}$, log (g), [Fe/H], and [$alpha$/Fe] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as $sim$120 K in T$_{rm eff}$, $sim$0.2 in log (g), $sim$0.15 dex in [Fe/H], and $sim$0.1 dex in [$alpha$/Fe] for spectra with S/N$>$40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.
We construct a sample of nearly 30,000 main-sequence stars with 4500K $<Trm_{eff}<$ 5000K and stellar ages estimated by the chromospheric activity$-$age relation. This sample is used to determine the age distribution in the $R-Z$ plane of the Galaxy, where $R$ is the projected Galactocentric distance in the disk midplane and $Z$ is the height above the disk midplane. As $|Z|$ increases, the percentage of old stars becomes larger. It is known that scale-height of Galactic disk increases as $R$ increases, which is called flare. A mild flare from $R$ $sim$ 8.0 to 9.0 kpc in stellar age distribution is found. We also find that the velocity dispersion increases with age as confirmed by previous studies. Finally we present spiral-shaped structures in $Z-upsilon_{Z}$ phase space in three stellar age bins. The spiral is clearly seen in the age bin of [0, 1] Gyr, which suggests that a vertical perturbation to the disk probably took place within the last $sim$ 1.0 Gyr.
We combine high-resolution spectroscopic data from APOGEE-2 Survey Data Release 16 (DR16) with broad-band photometric data from several sources, as well as parallaxes from {it Gaia} Data Release 2 (DR2). Using the Bayesian isochrone-fitting code {tt StarHorse}, we derive distances, extinctions and astrophysical parameters for around 388,815 APOGEE stars, achieving typical distance uncertainties of $sim 6%$ for APOGEE giants, $sim 2%$ for APOGEE dwarfs, as well as extinction uncertainties of $sim 0.07$ mag when all photometric information is available, and $sim 0.17$ mag if optical photometry is missing. {tt StarHorse} uncertainties vary with the input spectroscopic catalogue, with the available photometry, and with the parallax uncertainties. To illustrate the impact of our results, we show that, thanks to {it Gaia} DR2 and the now larger sky coverage of APOGEE-2 (including APOGEE-South), we obtain an extended map of the Galactic plane, providing unprecedented coverage of the disk close to the Galactic mid-plane ($|Z_{Gal}|<1$ kpc) from the Galactic Centre out to $R_{rm Gal}sim 20$ kpc. The improvements in statistics as well as distance and extinction uncertainties unveil the presence of the bar in stellar density, as well as the striking chemical duality in the innermost regions of the disk, now clearly extending to the inner bulge. We complement this paper with distances and extinctions for stars in other public released spectroscopic surveys: 324,999 in GALAH DR2, 4,928,715 in LAMOST DR5, 408,894 in RAVE DR6, and 6,095 in GES DR3
84 - F. Wang , H.-W. Zhang , Y. Huang 2021
We estimate the solar peculiar velocities and Oort constants using a sample of 5,627 A-type stars with $d<0.6,rm kpc$ and $|z|<0.1,rm kpc$, selected from the LAMOST surveys. The radial and tangential velocities of these A-type stars are fitted by using a non-axisymmetric model. The best-fitting result yields the solar peculiar velocities $(U_odot,V_odot,W_odot)=(11.69pm0.68, 10.16pm0.51, 7.67pm0.10),rm km,s^{-1}$ and Oort constants $A=16.31pm0.89,rm km,s^{-1},kpc^{-1}$, $B=-11.99pm0.79,rm km,s^{-1},kpc^{-1}$, $C=-3.10pm0.48,rm km,s^{-1},kpc^{-1}$, $K=-1.25pm1.04,rm km,s^{-1},kpc^{-1}$, respectively. $|K+C|>4,rm km,s^{-1},kpc^{-1}$ means that there is a radial velocity gradient in the extended local disk, implying the local disk is in a non-asymmetric potential. Using the derived Oort constants, we derive the local angular velocity $Omega,{approx},A-B=28.30pm1.19,rm km,s^{-1},kpc^{-1}$. By using A-type star sample of different volumes, we further try to evaluate the impacts of the ridge pattern in $R$-$V_{phi}$ plane on constraining the solar motions and Oort constants. As the volume becomes larger toward the anti-center direction, the values of $A$ and $B$ become larger (implying a steeper slope of the local rotation curve) and the value of $V_odot$ becomes smaller probably caused by the ridge structure and its signal increasing with distance.
Probability density functions are determined from new stellar parameters for the distance moduli of stars for which the RAdial Velocity Experiment (RAVE) has obtained spectra with S/N>=10. Single-Gaussian fits to the pdf in distance modulus suffice for roughly half the stars, with most of the other half having satisfactory two-Gaussian representations. As expected, early-type stars rarely require more than one Gaussian. The expectation value of distance is larger than the distance implied by the expectation of distance modulus; the latter is itself larger than the distance implied by the expectation value of the parallax. Our parallaxes of Hipparcos stars agree well with the values measured by Hipparcos, so the expectation of parallax is the most reliable distance indicator. The latter are improved by taking extinction into account. The effective temperature absolute-magnitude diagram of our stars is significantly improved when these pdfs are used to make the diagram. We use the method of kinematic corrections devised by Schoenrich, Binney & Asplund to check for systematic errors for general stars and confirm that the most reliable distance indicator is the expectation of parallax. For cool dwarfs and low-gravity giants <pi> tends to be larger than the true distance by up to 30 percent. The most satisfactory distances are for dwarfs hotter than 5500 K. We compare our distances to stars in 13 open clusters with cluster distances from the literature and find excellent agreement for the dwarfs and indications that we are over-estimating distances to giants, especially in young clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا