ﻻ يوجد ملخص باللغة العربية
Highly anisotropic properties of CeIr$_3$Si$_2$ have been observed by the magnetization $M$($B$), electrical resistivity $rho$, and specific heat measurements on a single-crystalline sample. This compound with an orthorhombic structure having zigzag chains of Ce ions along the a-axis undergos magnetic transitions at 3.9 K and 3.1 K. At 0.3 K, metamagnetic transitions occur at 0.68 T and 1.3 T for $B$$//$$b$ and 0.75 T for $B$$//$$c$. Easy-plane magnetocrystalline anisotropy is manifested as $M$($B//b$) $cong$ $M$($B//c$) $cong$ 11$M$($B//a$) at $B$ = 5 T. Electrical resistivity is also anisotropic; $rho_{b}$ $cong$ $rho_{c}$ $ge$ 2$rho_{a}$. The magnetic part of $rho$ exhibits a double-peak structure with maxima at 15 K and 250 K. The magnetic entropy at $T$$rm_{N1}$ = 3.9 K is a half of $R$ln2. These observations are ascribable to the combination of the Kondo effect with $T$$rm_{K}$ $sim$ 20 K and a strong crystal field effect. The analysis of $M$($B$) and paramagnetic susceptibility revealed unusually large energy splitting of 500 K and 1600 K for the two excited doublets, respectively.
We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our o
Magnetocrystalline anisotropy is a fundamental property of magnetic materials that determines the dynamics of magnetic precession, the frequency of spin waves, the thermal stability of magnetic domains, and the efficiency of spintronic devices. We co
We report on the single crystal growth and anisotropic physical properties of CeAgAs$_2$. The compound crystallizes as on ordered variant of the HfCuSi$_2$-type crystal structure and adopts the orthorhombic space group $Pmca$~(#57) with two symmetry
Pulsed field magnetization experiments extend the typical metamagnetic staircase of CuFeO2 up to 58 T to reveal an additional first order phase transition at high field for both the parallel and perpendicular field configuration. Virtually complete i
We present a study of the one-dimensional S=1 antiferromagnetic spin chain with large easy plane anisotropy, with special emphasis on field-induced quantum phase transitions. Temperature and magnetic field dependence of magnetization, specific heat,