ترغب بنشر مسار تعليمي؟ اضغط هنا

Easy-plane magnetocrystalline anisotropy in the multi-step metamagnet CeIr3Si2

224   0   0.0 ( 0 )
 نشر من قبل Keisuke Shigetoh
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly anisotropic properties of CeIr$_3$Si$_2$ have been observed by the magnetization $M$($B$), electrical resistivity $rho$, and specific heat measurements on a single-crystalline sample. This compound with an orthorhombic structure having zigzag chains of Ce ions along the a-axis undergos magnetic transitions at 3.9 K and 3.1 K. At 0.3 K, metamagnetic transitions occur at 0.68 T and 1.3 T for $B$$//$$b$ and 0.75 T for $B$$//$$c$. Easy-plane magnetocrystalline anisotropy is manifested as $M$($B//b$) $cong$ $M$($B//c$) $cong$ 11$M$($B//a$) at $B$ = 5 T. Electrical resistivity is also anisotropic; $rho_{b}$ $cong$ $rho_{c}$ $ge$ 2$rho_{a}$. The magnetic part of $rho$ exhibits a double-peak structure with maxima at 15 K and 250 K. The magnetic entropy at $T$$rm_{N1}$ = 3.9 K is a half of $R$ln2. These observations are ascribable to the combination of the Kondo effect with $T$$rm_{K}$ $sim$ 20 K and a strong crystal field effect. The analysis of $M$($B$) and paramagnetic susceptibility revealed unusually large energy splitting of 500 K and 1600 K for the two excited doublets, respectively.



قيم البحث

اقرأ أيضاً

We demonstrate that chiral skyrmionic magnetization configurations can be found as the minimum energy state in B20 thin film materials with easy-plane magnetocrystalline anisotropy with an applied magnetic field perpendicular to the film plane. Our o bservations contradict results from prior analytical work, but are compatible with recent experimental investigations. The size of the observed skyrmions increases with the easy-plane magnetocrystalline anisotropy. We use a full micromagnetic model including demagnetization and a three-dimensional geometry to find local energy minimum (metastable) magnetization configurations using numerical damped time integration. We explore the phase space of the system and start simulations from a variety of initial magnetization configurations to present a systematic overview of anisotropy and magnetic field parameters for which skyrmions are metastable and global energy minimum (stable) states.
Magnetocrystalline anisotropy is a fundamental property of magnetic materials that determines the dynamics of magnetic precession, the frequency of spin waves, the thermal stability of magnetic domains, and the efficiency of spintronic devices. We co mbine torque magnetometry and density functional theory calculations to determine the magnetocrystalline anisotropy of the metallic antiferromagnet Fe$_2$As. Fe$_2$As has a tetragonal crystal structure with the Neel vector lying in the (001) plane. We report that the four-fold magnetocrystalline anisotropy in the (001)-plane of Fe$_2$As is extremely small, ${K_{22}} = - 150~{rm{ J/}}{{rm{m}}^{rm{3}}}$ at T = 4 K, much smaller than perpendicular magnetic anisotropy of ferromagnetic structure widely used in spintronics device. ${K_{22}}$ is strongly temperature dependent and close to zero at T > 150 K. The anisotropy ${K_1}$ in the (010) plane is too large to be measured by torque magnetometry and we determine ${K_1} = -830~{rm{ kJ/}}{{rm{m}}^{rm{3}}}$ using first-principles density functional theory. Our simulations show that the contribution to the anisotropy from classical magnetic dipole-dipole interactions is comparable to the contribution from spin-orbit coupling. The calculated four-fold anisotropy in the (001) plane ${K_{22}}$ ranges from $- 292~{rm{ J/}}{{rm{m}}^{rm{3}}}$ to $280~{rm{ J/}}{{rm{m}}^{rm{3}}}$, the same order of magnitude as the measured value. We use ${K_1}$ from theory to predict the frequency and polarization of the lowest frequency antiferromagnetic resonance mode and find that the mode is linearly polarized in the (001)-plane with $f = $ 670 GHz.
We report on the single crystal growth and anisotropic physical properties of CeAgAs$_2$. The compound crystallizes as on ordered variant of the HfCuSi$_2$-type crystal structure and adopts the orthorhombic space group $Pmca$~(#57) with two symmetry inequivalent cerium atomic positions in the unit cell. The orthorhombic crystal structure of our single crystal was confirmed from the powder x-ray diffraction and from electron diffraction patterns obtained from the transmission electron microscope. The anisotropic physical properties have been investigated on a good quality single crystal by measuring the magnetic susceptibility, isothermal magnetization, electrical transport and heat capacity. The magnetic susceptibility and magnetization measurements revealed that this compound orders antiferromagnetically with two closely spaced magnetic transitions at $T_{rm N1} = 6$~K and $T_{rm N2} = 4.9$~K. Magnetization studies have revealed a large magnetocrystalline anisotropy due to the crystalline electric field (CEF) with an easy axis of magnetization along the [010] direction. The magnetic susceptibility measured along the [001] direction exhibited a broad hump in the temperature range 50 to 250~K, while typical Curie-Weiss behaviour was observed along the other two orthogonal directions. The electrical resistivity and the heat capacity measurements revealed that CeAgAs$_2$ is a Kondo lattice system with a magnetic ground state.
Pulsed field magnetization experiments extend the typical metamagnetic staircase of CuFeO2 up to 58 T to reveal an additional first order phase transition at high field for both the parallel and perpendicular field configuration. Virtually complete i sotropic behavior is retrieved only above this transition, indicating the high-field recovery of the undistorted triangular lattice. A consistent phenomenological rationalization for the field dependence and metamagnetism crossover of the system is provided, demonstrating the importance of both spin-phonon coupling and a small field-dependent easy-axis anisotropy in accurately describing the magnetization process of CuFeO2.
We present a study of the one-dimensional S=1 antiferromagnetic spin chain with large easy plane anisotropy, with special emphasis on field-induced quantum phase transitions. Temperature and magnetic field dependence of magnetization, specific heat, and thermal conductivity is presented using a combination of numerical methods. In addition, the original S=1 model is mapped into the low-energy effective S=1/2 XXZ Heisenberg chain, a model which is exactly solvable using the Bethe ansatz technique. The effectiveness of the mapping is explored, and we show that all considered quantities are in qualitative, and in some cases quantitative, agreement. The thermal conductivity of the considered S=1 model is found to be strongly influenced by the underlying effective description. Furthermore, we elucidate the low-lying electron spin resonance spectrum, based on a semi--analytical Bethe ansatz calculation of the effective S=1/2 model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا