ترغب بنشر مسار تعليمي؟ اضغط هنا

High-field recovery of the undistorted triangular lattice in the frustrated metamagnet CuFeO2

209   0   0.0 ( 0 )
 نشر من قبل Tom Lummen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsed field magnetization experiments extend the typical metamagnetic staircase of CuFeO2 up to 58 T to reveal an additional first order phase transition at high field for both the parallel and perpendicular field configuration. Virtually complete isotropic behavior is retrieved only above this transition, indicating the high-field recovery of the undistorted triangular lattice. A consistent phenomenological rationalization for the field dependence and metamagnetism crossover of the system is provided, demonstrating the importance of both spin-phonon coupling and a small field-dependent easy-axis anisotropy in accurately describing the magnetization process of CuFeO2.

قيم البحث

اقرأ أيضاً

The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) $rm CuFeO_2$ have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with $J_2/J_1 approx 0.44$ and $J_3/J_1 approx 0.57$), as well as out-of-plane coupling (J_z, with $J_z/J_1 approx 0.29$) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.
146 - M. Swanson , J.T. Haraldsen , 2009
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave freque ncies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SL and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.
262 - K. Y. Zeng , Long Ma , Y. X. Gao 2019
In this paper, we study the spin excitation properties of the frustrated triangular-lattice antiferromagnet Yb(BaBO$_3$)$_3$ with nuclear magnetic resonance. From the spectral analysis, neither magnetic ordering nor spin freezing is observed with tem perature down to $T=0.26$ K, far below its Curie-Weiss temperature $|theta_w|sim2.3$ K. From the nuclear relaxation measurement, precise temperature-independent spin-lattice relaxation rates are observed at low temperatures under a weak magnetic field, indicating the gapless spin excitations. Further increasing the field intensity, we observe a spin excitation gap with the gap size proportional to the field intensity. These phenomena suggest a very unusual strongly correlated quantum disordered phase, and the implications for the quantum spin liquid state are further discussed.
The recently discovered material Cs$_3$Fe$_2$Br$_9$ contains Fe$_2$Br$_9$ bi-octahedra forming triangular layers with hexagonal stacking along the $c$ axis. In contrast to isostructural Cr-based compounds, the zero-field ground state is not a nonmagn etic $S=0$ singlet-dimer state. Instead, the Fe$_2$Br$_9$ bi-octahedra host semiclassical $S=5/2$ Fe$^{3+}$ spins with a pronounced easy-axis anisotropy along $c$ and interestingly, the intra-dimer spins are ordered ferromagnetically. The high degree of magnetic frustration due to (various) competing intra- and inter-dimer couplings leads to a surprisingly rich magnetic phase diagram. Already the zero-field ground state is reached via an intermediate phase, and the high-field magnetization and thermal expansion data for $Hparallel c$ identify ten different ordered phases. Among them are phases with constant magnetization of 1/3, respectively 1/2 of the saturation value, and several transitions are strongly hysteretic with pronounced length changes reflecting strong magnetoelastic coupling.
LiZn$_2$Mo$_3$O$_8$ is an electrically insulating geometrically frustrated antiferromagnet in which inorganic Mo$_3$O$_{13}$ clusters each behaves as a single $S = 1/2$ unit, with the clusters arranged on a two-dimensional triangular lattice. Prior r esults have shown that LiZn$_2$Mo$_3$O$_8$ does not exhibit static magnetic order down to at least $T = 0.05,K$, and instead possesses a valence bond ground state. Here, we show that LiZn$_2$Mo$_3$O$_8$ can be hole doped by oxidation with $mathrm{I}_2$ and subsequent removal of $mathrm{Zn}^{2+}$ cations to access the entire range of electron count, from one to zero unpaired electrons per site on the triangular lattice. Contrary to expectations, no metallic state is induced; instead, the primary effect is to suppress the number of sites contributing to the condensed valence-bond state. Further, diffraction and pair-distribution function analysis show no evidence for local Jahn-Teller distortions or other deviations from the parent trigonal symmetry as a function of doping or temperature. Taken together, the data and density functional theory calculations indicate that removal of electrons from the magnetic layers favors Anderson localization of the resulting hole and an increase in the electrical band-gap over the formation of a metallic and superconducting state. These results put strong constraints on the chemical conditions necessary to realize metallic states from parent insulating geometrically frustrated antiferromagnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا