ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-symmetric Compton scattering in LiNiPO$_4$: Towards a direct probe of the magneto-electric multipole moment

64   0   0.0 ( 0 )
 نشر من قبل Sayantika Bhowal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined theoretical and experimental investigation of the anti-symmetric Compton profile in LiNiPO$_4$ as a possible probe for magneto-electric toroidal moments. Understanding as well as detecting such magneto-electric multipoles is an active area of research in condensed matter physics. Our calculations, based on density functional theory, indicate an anti-symmetric Compton profile in the direction of the $t_y$ toroidal moment in momentum space, with the computed anti-symmetric profile around four orders of magnitude smaller than the total profile. The difference signal that we measure is consistent with the computed profile, but of the same order of magnitude as the statistical errors and systematic uncertainties of the experiment. Our results motivate further theoretical work to understand the factors that influence the size of the anti-symmetric Compton profile, and to identify materials exhibiting larger effects.



قيم البحث

اقرأ أيضاً

Magneto-electric multipoles, which are odd under both space-inversion $cal I$ and time-reversal $cal T$ symmetries, are fundamental in understanding and characterizing magneto-electric materials. However, the detection of these magneto-electric multi poles is often not straightforward as they remain hidden in conventional experiments in part since many magneto-electrics exhibit combined $cal IT$ symmetry. In the present work, we show that the anti-symmetric Compton profile is a unique signature for all the magneto-electric multipoles, since the asymmetric magnetization density of the magneto-electric multipoles couples to space via spin-orbit coupling, resulting in an anti-symmetric Compton profile. We develop the key physics of the anti-symmetric Compton scattering using symmetry analysis and demonstrate it using explicit first-principles calculations for two well-known representative materials with magneto-electric multipoles, insulating LiNiPO$_4$ and metallic Mn$_2$Au. Our work emphasizes the crucial roles of the orientation of the spin moments, the spin-orbit coupling, and the band structure in generating the anti-symmetric Compton profile in magneto-electric materials.
Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic state especially in reference to the magnetic spin flop transi tion. Magnetic measurements confirm the Co4Nb2O9 becomes antiferromagnetic (AFM) at around 28 K but no clear evidence for spin-flop effect was found. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of the strong magneto-electric coupling below Neel temperature (TN) with a large coupling constant upto 17.8 uC/m^2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state.
Topological insulators (TIs) exhibit many exotic properties. In particular, a topological magneto-electric (TME) effect, quantized in units of the fine structure constant, exists in TIs. In this Letter, we study theoretically the scattering propertie s of electromagnetic waves by TI circular cylinders particularly in the Rayleigh scattering limit. Compared with ordinary dielectric cylinders, the scattering by TI cylinders shows many unusual features due to the TME effect. Two proposals are suggested to determine the TME effect of TIs simply based on measuring the electric-field components of scattered waves in the far field at one or two scattering angles. Our results could also offer a way to measure the fine structure constant.
We extend the theory of dipole moments in crystalline insulators to higher multipole moments. In this paper, we expand in great detail the theory presented in Ref. 1, and extend it to cover associated topological pumping phenomena, and a novel class of 3D insulator with chiral hinge states. In quantum-mechanical crystalline insulators, higher multipole bulk moments manifest themselves by the presence of boundary-localized moments of lower dimension, in exact correspondence with the electromagnetic theory of classical continuous dielectrics. In the presence of certain symmetries, these moments are quantized, and their boundary signatures are fractionalized. These multipole moments then correspond to new SPT phases. The topological structure of these phases is described by nested Wilson loops, which reflect the bulk-boundary correspondence in a way that makes evident a hierarchical classification of the multipole moments. Just as a varying dipole generates charge pumping, a varying quadrupole generates dipole pumping, and a varying octupole generates quadrupole pumping. For non-trivial adiabatic cycles, the transport of these moments is quantized. An analysis of these interconnected phenomena leads to the conclusion that a new kind of Chern-type insulator exists, which has chiral, hinge-localized modes in 3D. We provide the minimal models for the quantized multipole moments, the non-trivial pumping processes and the hinge Chern insulator, and describe the topological invariants that protect them.
We report on a quantitative experimental determination of the three-dimensional magnetization vector trajectory in GaMnAs by means of the static and time-resolved pump-and-probe magneto-optical measurements. The experiments are performed in a normal incidence geometry and the time evolution of the magnetization vector is obtained without any numerical modeling of magnetization dynamics. Our experimental method utilizes different polarization dependences of the polar Kerr effect and magnetic linear dichroism to disentangle the pump-induced out-of-plane and in-plane motions of magnetization, respectively. We demonstrate that the method is sensitive enough to allow for the determination of small angle excitations of the magnetization in GaMnAs. The method is readily applicable to other magnetic materials with sufficiently strong circular and linear magneto-optical effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا