ترغب بنشر مسار تعليمي؟ اضغط هنا

Exceptional magneto-electric coupling and spontaneous electric polarization in anti-ferromagnet Co4Nb2O9

156   0   0.0 ( 0 )
 نشر من قبل Satyabrata Patnaik
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic state especially in reference to the magnetic spin flop transition. Magnetic measurements confirm the Co4Nb2O9 becomes antiferromagnetic (AFM) at around 28 K but no clear evidence for spin-flop effect was found. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of the strong magneto-electric coupling below Neel temperature (TN) with a large coupling constant upto 17.8 uC/m^2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state.

قيم البحث

اقرأ أيضاً

We report observation of magneto-electric and magneto-dielectric couplings in ceramic Co3TeO6. Temperature dependent DC magnetization and dielectric constant measurements together indicate coupling between magnetic order and electronic polarization. Strong anomaly in dielectric constant at ~ 18K in zero magnetic field indicates presence of spontaneous polarization. Observations like weak ferromagnetic order at lower temperature, field and temperature dependences of the ferroelectric transition provide experimental verification of the recent theoretical proposal by P. Toledano et al., Phys. Rev. B 85, 214439 (2012). We provide direct evidence of spin-phonon coupling as possible origin of magnetic order.
We investigate the electronic structure and the ferroelectric properties of the recently discovered multiferroic ScFeO$_3$ by means of ab-initio calculations. The $3d$ manifold of Fe in the half-filled configuration naturally favors an antiferromagne tic ordering, with a theoretical estimate of the antiferromagnetic Neel temperature in good agreement with the experimental values. We find that the inversion symmetry-breaking is driven by the off-centering of Sc atoms, which results in a large ferroelectric polarization of $sim$105,$mu$C/cm$^{2}$. Surprisingly the ferroelectric polarization is sensitive to the local magnetization of the Fe atoms resulting in a large negative magnetoelectric interaction. This behavior is unexpected in type-I multiferroic materials because the magnetic and ferroelectric orders are of different origins.
The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO3, KNbO3, PbTiO3 and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their link with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study ferroelectric order when standard techniques to measure polarization are not easily applied.
Effect of spin-orbit coupling (SOC) on Dirac electrons in the organic conductor $alpha$-(BETS)$_2$I$_3$ [BETS = bis(ethylenedithio)tetraselenafulvalene] has been examined by calculating electric conductivity and spin magnetic susceptibility. A tight- binding (TB) model with transfer energies consisting of real and imaginary parts is evaluated using first-principles density-functional theory calculation. The conductivity without SOC depends on both anisotropies of the velocity of the Dirac cone and the tiling of the cone. Such conductivity is suppressed by the SOC, which gives rise to the imaginary part of the transfer energy. It is shown at low temperatures that the conductivity decreases due to the SOC and the Dirac cone with linear dispersion. A nearly constant conductivity at high temperatures is obtained by an electron-phonon (e--p) scattering. Further, the property of the Dirac cone is examined for spin susceptibility, which is mainly determined by the density of states (DOS). The result is compared with the case of the organic conductor $alpha$-(BEDT-TTF)$_2$I$_3$ [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene], which provides the Dirac cone without SOC. The relevance to experiments is discussed.
Alternating current RLC electric circuits form an accessible and highly tunable platform simulating Hermitian as well as non-Hermitian (nH) quantum systems. We propose here a circuit realization of nH Dirac and Weyl Hamiltonians subject to time-rever sal invariant pseudo-magnetic field, enabling the exploration of novel nH physics. We identify the low-energy physics with a generic real energy spectrum from the nH Landau quantization of exceptional points and rings, which can avoid the nH skin effect and provides a physical example of a quasiparticle moving in the complex plane. Realistic detection schemes are designed to probe the flat energy bands, sublattice polarization, edge states protected by a nH energy-reflection symmetry, and a characteristic nodeless probability distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا