ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Microphone Speech Enhancement based on Deep Learning

159   0   0.0 ( 0 )
 نشر من قبل SyuSiang Wang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Speech-related applications deliver inferior performance in complex noise environments. Therefore, this study primarily addresses this problem by introducing speech-enhancement (SE) systems based on deep neural networks (DNNs) applied to a distributed microphone architecture, and then investigates the effectiveness of three different DNN-model structures. The first system constructs a DNN model for each microphone to enhance the recorded noisy speech signal, and the second system combines all the noisy recordings into a large feature structure that is then enhanced through a DNN model. As for the third system, a channel-dependent DNN is first used to enhance the corresponding noisy input, and all the channel-wise enhanced outputs are fed into a DNN fusion model to construct a nearly clean signal. All the three DNN SE systems are operated in the acoustic frequency domain of speech signals in a diffuse-noise field environment. Evaluation experiments were conducted on the Taiwan Mandarin Hearing in Noise Test (TMHINT) database, and the results indicate that all the three DNN-based SE systems provide the original noise-corrupted signals with improved speech quality and intelligibility, whereas the third system delivers the highest signal-to-noise ratio (SNR) improvement and optimal speech intelligibility.



قيم البحث

اقرأ أيضاً

Most recent studies on deep learning based speech enhancement (SE) focused on improving denoising performance. However, successful SE applications require striking a desirable balance between denoising performance and computational cost in real scena rios. In this study, we propose a novel parameter pruning (PP) technique, which removes redundant channels in a neural network. In addition, a parameter quantization (PQ) technique was applied to reduce the size of a neural network by representing weights with fewer cluster centroids. Because the techniques are derived based on different concepts, the PP and PQ can be integrated to provide even more compact SE models. The experimental results show that the PP and PQ techniques produce a compacted SE model with a size of only 10.03% compared to that of the original model, resulting in minor performance losses of 1.43% (from 0.70 to 0.69) for STOI and 3.24% (from 1.85 to 1.79) for PESQ. The promising results suggest that the PP and PQ techniques can be used in a SE system in devices with limited storage and computation resources.
Diffusion probabilistic models have demonstrated an outstanding capability to model natural images and raw audio waveforms through a paired diffusion and reverse processes. The unique property of the reverse process (namely, eliminating non-target si gnals from the Gaussian noise and noisy signals) could be utilized to restore clean signals. Based on this property, we propose a diffusion probabilistic model-based speech enhancement (DiffuSE) model that aims to recover clean speech signals from noisy signals. The fundamental architecture of the proposed DiffuSE model is similar to that of DiffWave--a high-quality audio waveform generation model that has a relatively low computational cost and footprint. To attain better enhancement performance, we designed an advanced reverse process, termed the supportive reverse process, which adds noisy speech in each time-step to the predicted speech. The experimental results show that DiffuSE yields performance that is comparable to related audio generative models on the standardized Voice Bank corpus SE task. Moreover, relative to the generally suggested full sampling schedule, the proposed supportive reverse process especially improved the fast sampling, taking few steps to yield better enhancement results over the conventional full step inference process.
170 - Siyuan Zhang , Xiaofei Li 2021
This paper addresses the problem of microphone array generalization for deep-learning-based end-to-end multichannel speech enhancement. We aim to train a unique deep neural network (DNN) potentially performing well on unseen microphone arrays. The mi crophone array geometry shapes the networks parameters when training on a fixed microphone array, and thus restricts the generalization of the trained network to another microphone array. To resolve this problem, a single network is trained using data recorded by various microphone arrays of different geometries. We design three variants of our recently proposed narrowband network to cope with the agnostic number of microphones. Overall, the goal is to make the network learn the universal information for speech enhancement that is available for any array geometry, rather than learn the one-array-dedicated characteristics. The experiments on both simulated and real room impulse responses (RIR) demonstrate the excellent across-array generalization capability of the proposed networks, in the sense that their performance measures are very close to, or even exceed the network trained with test arrays. Moreover, they notably outperform various beamforming methods and other advanced deep-learning-based methods.
In this study, we present a deep learning-based speech signal-processing mobile application, called CITISEN, which can perform three functions: speech enhancement (SE), model adaptation (MA), and acoustic scene conversion (ASC). For SE, CITISEN can e ffectively reduce noise components from speech signals and accordingly enhance their clarity and intelligibility. When it encounters noisy utterances with unknown speakers or noise types, the MA function allows CITISEN to effectively improve the SE performance by adapting an SE model with a few audio files. Finally, for ASC, CITISEN can convert the current background sound into a different background sound. The experimental results confirmed the effectiveness of performing SE, MA, and ASC functions via objective evaluation and subjective listening tests. Moreover, the MA experimental results indicated that short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ) could be improved by approximately 5% and 10%, respectively. The promising results reveal that the developed CITISEN mobile application can be potentially used as a front-end processor for various speech-related services such as voice communication, assistive hearing devices, and virtual reality headsets. In addition, CITISEN can be used as a platform for using and evaluating the newly performed deep-learning-SE models, and can flexibly extend the models to address various noise environments and users.
147 - Xu Tan , Xiao-Lei Zhang 2020
Robust voice activity detection (VAD) is a challenging task in low signal-to-noise (SNR) environments. Recent studies show that speech enhancement is helpful to VAD, but the performance improvement is limited. To address this issue, here we propose a speech enhancement aided end-to-end multi-task model for VAD. The model has two decoders, one for speech enhancement and the other for VAD. The two decoders share the same encoder and speech separation network. Unlike the direct thought that takes two separated objectives for VAD and speech enhancement respectively, here we propose a new joint optimization objective -- VAD-masked scale-invariant source-to-distortion ratio (mSI-SDR). mSI-SDR uses VAD information to mask the output of the speech enhancement decoder in the training process. It makes the VAD and speech enhancement tasks jointly optimized not only at the shared encoder and separation network, but also at the objective level. It also satisfies real-time working requirement theoretically. Experimental results show that the multi-task method significantly outperforms its single-task VAD counterpart. Moreover, mSI-SDR outperforms SI-SDR in the same multi-task setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا