ترغب بنشر مسار تعليمي؟ اضغط هنا

CITISEN: A Deep Learning-Based Speech Signal-Processing Mobile Application

219   0   0.0 ( 0 )
 نشر من قبل SyuSiang Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we present a deep learning-based speech signal-processing mobile application, called CITISEN, which can perform three functions: speech enhancement (SE), model adaptation (MA), and acoustic scene conversion (ASC). For SE, CITISEN can effectively reduce noise components from speech signals and accordingly enhance their clarity and intelligibility. When it encounters noisy utterances with unknown speakers or noise types, the MA function allows CITISEN to effectively improve the SE performance by adapting an SE model with a few audio files. Finally, for ASC, CITISEN can convert the current background sound into a different background sound. The experimental results confirmed the effectiveness of performing SE, MA, and ASC functions via objective evaluation and subjective listening tests. Moreover, the MA experimental results indicated that short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ) could be improved by approximately 5% and 10%, respectively. The promising results reveal that the developed CITISEN mobile application can be potentially used as a front-end processor for various speech-related services such as voice communication, assistive hearing devices, and virtual reality headsets. In addition, CITISEN can be used as a platform for using and evaluating the newly performed deep-learning-SE models, and can flexibly extend the models to address various noise environments and users.



قيم البحث

اقرأ أيضاً

Speech-related applications deliver inferior performance in complex noise environments. Therefore, this study primarily addresses this problem by introducing speech-enhancement (SE) systems based on deep neural networks (DNNs) applied to a distribute d microphone architecture, and then investigates the effectiveness of three different DNN-model structures. The first system constructs a DNN model for each microphone to enhance the recorded noisy speech signal, and the second system combines all the noisy recordings into a large feature structure that is then enhanced through a DNN model. As for the third system, a channel-dependent DNN is first used to enhance the corresponding noisy input, and all the channel-wise enhanced outputs are fed into a DNN fusion model to construct a nearly clean signal. All the three DNN SE systems are operated in the acoustic frequency domain of speech signals in a diffuse-noise field environment. Evaluation experiments were conducted on the Taiwan Mandarin Hearing in Noise Test (TMHINT) database, and the results indicate that all the three DNN-based SE systems provide the original noise-corrupted signals with improved speech quality and intelligibility, whereas the third system delivers the highest signal-to-noise ratio (SNR) improvement and optimal speech intelligibility.
Most recent studies on deep learning based speech enhancement (SE) focused on improving denoising performance. However, successful SE applications require striking a desirable balance between denoising performance and computational cost in real scena rios. In this study, we propose a novel parameter pruning (PP) technique, which removes redundant channels in a neural network. In addition, a parameter quantization (PQ) technique was applied to reduce the size of a neural network by representing weights with fewer cluster centroids. Because the techniques are derived based on different concepts, the PP and PQ can be integrated to provide even more compact SE models. The experimental results show that the PP and PQ techniques produce a compacted SE model with a size of only 10.03% compared to that of the original model, resulting in minor performance losses of 1.43% (from 0.70 to 0.69) for STOI and 3.24% (from 1.85 to 1.79) for PESQ. The promising results suggest that the PP and PQ techniques can be used in a SE system in devices with limited storage and computation resources.
We present a data-driven approach to automate audio signal processing by incorporating stateful third-party, audio effects as layers within a deep neural network. We then train a deep encoder to analyze input audio and control effect parameters to pe rform the desired signal manipulation, requiring only input-target paired audio data as supervision. To train our network with non-differentiable black-box effects layers, we use a fast, parallel stochastic gradient approximation scheme within a standard auto differentiation graph, yielding efficient end-to-end backpropagation. We demonstrate the power of our approach with three separate automatic audio production applications: tube amplifier emulation, automatic removal of breaths and pops from voice recordings, and automatic music mastering. We validate our results with a subjective listening test, showing our approach not only can enable new automatic audio effects tasks, but can yield results comparable to a specialized, state-of-the-art commercial solution for music mastering.
The Transformer architecture has demonstrated a superior ability compared to recurrent neural networks in many different natural language processing applications. Therefore, our study applies a modified Transformer in a speech enhancement task. Speci fically, positional encoding in the Transformer may not be necessary for speech enhancement, and hence, it is replaced by convolutional layers. To further improve the perceptual evaluation of the speech quality (PESQ) scores of enhanced speech, the L_1 pre-trained Transformer is fine-tuned using a MetricGAN framework. The proposed MetricGAN can be treated as a general post-processing module to further boost the objective scores of interest. The experiments were conducted using the data sets provided by the organizer of the Deep Noise Suppression (DNS) challenge. Experimental results demonstrated that the proposed system outperformed the challenge baseline, in both subjective and objective evaluations, with a large margin.
The purpose of speech dereverberation is to remove quality-degrading effects of a time-invariant impulse response filter from the signal. In this report, we describe an approach to speech dereverberation that involves joint estimation of the dry spee ch signal and of the room impulse response. We explore deep learning models that apply to each task separately, and how these can be combined in a joint model with shared parameters.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا