ﻻ يوجد ملخص باللغة العربية
We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to $q$-deformed $W$-algebras and lattice Poisson algebras. We introduce the notion of Adler type pseudodifference operators and apply them to integrability of differential-difference Hamiltonian equations.
We introduce the notion of a multiplicative Poisson $lambda$-bracket, which plays the same role in the theory of Hamiltonian differential-difference equations as the usual Poisson $lambda$-bracket plays in the theory of Hamiltonian PDE. We classify m
We show that sheet closures appear as associated varieties of affine vertex algebras. Further, we give new examples of non-admissible affine vertex algebras whose associated variety is contained in the nilpotent cone. We also prove some conjectures f
Master equations are a useful tool to describe the evolution of open quantum systems. In order to characterize the mathematical features and the physical origin of the dynamics, it is often useful to consider different kinds of master equations for t
An algebraic method is devised to look for non-local symmetries of the pseudopotential type of nonlinear field equations. The method is based on the use of an infinite-dimensional subalgebra of the prolongation algebra $L$ associated with the equatio
This note is designed to show some classes of differential-difference equations admitting Lax representation which generalize evolutionary equations known in the literature.