ترغب بنشر مسار تعليمي؟ اضغط هنا

Poisson $lambda$-brackets for differential-difference equations

246   0   0.0 ( 0 )
 نشر من قبل Minoru Wakimoto
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of a multiplicative Poisson $lambda$-bracket, which plays the same role in the theory of Hamiltonian differential-difference equations as the usual Poisson $lambda$-bracket plays in the theory of Hamiltonian PDE. We classify multiplicative Poisson $lambda$-brackets in one difference variable up to order 5. Applying the Lenard-Magri scheme to a compatible pair of multiplicative Poisson $lambda$-brackets of order 1 and 2, we establish integrability of some differential-difference equations, generalizing the Volterra chain.

قيم البحث

اقرأ أيضاً

We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to $q$-d eformed $W$-algebras and lattice Poisson algebras. We introduce the notion of Adler type pseudodifference operators and apply them to integrability of differential-difference Hamiltonian equations.
We introduce new invariants associated to collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants invo lves various flavors of Floer theory. We present applications to approximation theory on symplectic manifolds and to Hamiltonian dynamics.
We discuss how the integrators used for the Hybrid Monte Carlo (HMC) algorithm not only approximately conserve some Hamiltonian $H$ but exactly conserve a nearby shadow Hamiltonian (tilde H), and how the difference $Delta H equiv tilde H - H $ may be expressed as an expansion in Poisson brackets. By measuring average values of these Poisson brackets over the equilibrium distribution $propto e^{-H}$ generated by HMC we can find the optimal integrator parameters from a single simulation. We show that a good way of doing this in practice is to minimize the variance of $Delta H$ rather than its magnitude, as has been previously suggested. Some details of how to compute Poisson brackets for gauge and fermion fields, and for nested and force gradient integrators are also presented.
78 - K. Bering 1999
We find a new d-parameter family of ultra-local boundary Poisson brackets that satisfy the Jacobi identity. The two already known cases (hep-th/9305133, hep-th/9806249 and hep-th/9901112) of ultra-local boundary Poisson brackets are included in this new continuous family as special cases.
133 - Xin Liu , Zhenxin Liu 2020
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-peri odic, pseudo-recurrent and Poisson stable) solutions for semilinear stochastic differential equations driven by infinite dimensional Levy noise with large jumps. Under suitable conditions on drift, diffusion and jump coefficients, we prove that there exist solutions which inherit the Poisson stability of coefficients. Further we show that these solutions are globally asymptotically stable in square-mean sense. Finally, we illustrate our theoretical results by several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا