ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of Proposed Search for Axion-induced Magnetic Field using Optically Pumped Magnetometers

78   0   0.0 ( 0 )
 نشر من قبل Ping-Han Chu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a search for the oscillating current induced by axion dark matter in an external magnetic field using optically pumped magnetometers (OPMs). This experiment is based upon the LC circuit axion detection concept of Sikivie, Sullivan, and Tanner. The modification of Maxwells equations caused by the axion-photon coupling results in a minute oscillating magnetic field at the frequency equal to the axion mass in the presence of magnetic field. This induced magnetic field could be searched for using an LC circuit amplifier with an OPM, the most sensitive cryogen-free magnetic-field sensor, in a room temperature experiment, avoiding the need for a complicated and expensive cryogenic system. We discuss how an existing magnetic resonance imaging (MRI) experiment can be modified to search for axions in a previously unexplored part of the parameter space. Our existing detection setup, optimized for MRI, is already sensitive to an axion-photon coupling of $10^{-7}$ GeV$^{-1}$ for an axion mass near $3times10^{-10}$ eV. While this is ruled out by limits from astrophysics and solar axion searches, we show that realistic modifications, and optimization of the experiment for axion detection, can set a new limit on the axion-photon coupling up to three orders of magnitude beyond the current best limit, for axion masses between $10^{-11}$ eV and $10^{-7}$ eV.ion masses between $10^{-11}$ eV and $10^{-7}$ eV.


قيم البحث

اقرأ أيضاً

123 - C. Abel , S. Afach , N. J. Ayres 2019
An array of sixteen laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiments magneti c field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic field readout. We present two applications of the magnetometer array directly beneficial to the nEDM experiment: (i) the implementation of a strategy to correct for the drift of the vertical magnetic field gradient and (ii) a procedure to homogenize the magnetic field. The first reduces the uncertainty of the new nEDM result. The second enables transverse neutron spin relaxation times exceeding 1500 s, improving the statistical sensitivity of the nEDM experiment by about 35% and effectively increasing the rate of nEDM data taking by a factor of 1.8.
129 - P.-H. Chu , Y. J. Kim , I. Savukov 2018
We propose an experimental search for an axion-induced oscillating electric dipole moment (OEDM) for electrons using state-of-the-art alkali vapor-cell atomic magnetometers. The axion is a hypothesized new fundamental particle which can resolve the s trong charge-parity problem and be a prominent dark matter candidate. This experiment utilizes an atomic magnetometer as both a source of optically polarized electron spins and a magnetic-field sensor. The interaction of the axion field, oscillating at a frequency equal to the axion mass, with an electron spin induces a sizable OEDM of the electron at the same frequency as the axion field. When the alkali vapor is subjected to an electric field and a magnetic field, the electron OEDM interacts with the electric field, resulting in an electron spin precession at the spins Larmor frequency in the magnetic field. The resulting precession signal can be sensitively detected with a probe laser beam of the atomic magnetometer. We estimate that the experiment is sensitive to the axion-photon interaction in ultralight axion masses from $10^{-15}$ to $10^{-10}$~eV. It is able to improve the current experimental limit up to 5 orders of magnitude, exploring new axion parameter spaces.
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this sta tic magnetic field, and therefore improve the sensitivity of such searches in the low frequency lumped-circuit limit. Using gadolinium iron garnet toroids at temperature 4.2 K results in a factor of 4 enhancement compared to an air-core toroidal design. The enhancement is limited by magnetic saturation. Correlation of signals from three such toroids allows efficient rejection of systematics due to electromagnetic interference. The sensitivity of a centimeter-scale axion dark matter search based on this approach is on the order of $g_{agammagamma}approx10^{-9}$ GeV$^{-1}$ after 8 hours of data collection for axion masses near $10^{-10}$ eV. This approach may substantially extend the sensitivity reach of large-volume lumped element axion dark matter searches.
In the recent work arXiv:1809.02446, the authors proposed a new method measuring the electron oscillating electric dipole moment (eOEDM) using atomic magnetomaters. This eOEDM is induced by the interaction between the electron magnetic dipole moment, electric field and axion field. The result is sensitive to the axion-photon coupling according to [Hill, PRD 91, 111702 (2015)]. Here we want to describe that the same experimental method can be also sensitive to the axion-electron coupling according to [Alexander and Sims, PRD 98, 015011 (2018)]. In this article, we will show the corresponding sensitivity plot and compare with other constraints.
When optically pumped magnetometers are aimed for the use in Earths magnetic field, the orientation of the sensor to the field direction is of special importance to achieve accurate measurement result. Measurement errors and inaccuracies related to t he heading of the sensor can be an even more severe problem in the case of special operational configurations, such as for example the use of strong off-resonant pumping. We systematically study the main contributions to the heading error in systems that promise high magnetic field resolutions at Earths magnetic field strengths, namely the non-linear Zeeman splitting and the orientation dependent light shift. The good correspondence of our theoretical analysis to experimental data demonstrates that both of these effects are related to a heading dependent modification of the interaction between the laser light and the dipole moment of the atoms. Also, our results promise a compensation of both effects using a combination of clockwise and counter clockwise circular polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا