ﻻ يوجد ملخص باللغة العربية
We study the evolution of an open quantum system described by a dynamical semigroup having the Lindblad superoperator as a generator. This generator may have an eigenfunction with a unity eigenvalue, referred to as a constant of motion (COM). An open quantum system has a unique stationary state if and only if it has no COMs. A system with multiple stationary states has a basis of COMs; any COM of the system is a linear combination of the basis COMs. The basis divides the space of system states into subspaces. Each subspace has its own stationary state, and any stationary state of the system is a linear combination of these states. Usually, neither the basis of COMs nor even the number of COMs is known. We demonstrate that finding the stationary state of the system does not require looking for the COMs. Instead, one can construct a set of invariant subspaces. If the system evolution begins from one of these subspaces, the system will remain in it, arriving at a stationary state independent of evolution in other subspaces. We suggest a direct way of finding the invariant subspaces by studying the evolution of the system. We show that the sets of invariant subspaces and subspaces generated by the basis of COMs are equivalent. A stationary state of the system is a weighted sum of stationary states in each invariant subspace; the weighted factors are determined by the initial state of the system.
Thermalization of isolated quantum systems has been studied intensively in recent years and significant progresses have been achieved. Here, we study thermalization of small quantum systems that interact with large chaotic environments under the cons
We consider open quantum systems consisting of a finite system of independent fermions with arbitrary Hamiltonian coupled to one or more equilibrium fermion reservoirs (which need not be in equilibrium with each other). A strong form of the third law
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same inten
The phenomenon described by our title should surprise no one. What may be surprising though is how easy it is to produce a quantum system with this feature; moreover, that system is one that is often used for the purpose of showing how systems equili
We study the twirling semigroups of (super)operators, namely, certain quantum dynamical semigroups that are associated, in a natural way, with the pairs formed by a projective representation of a locally compact group and a convolution semigroup of p