ﻻ يوجد ملخص باللغة العربية
We consider open quantum systems consisting of a finite system of independent fermions with arbitrary Hamiltonian coupled to one or more equilibrium fermion reservoirs (which need not be in equilibrium with each other). A strong form of the third law of thermodynamics, $S(T) rightarrow 0$ as $Trightarrow 0$, is proven for fully open quantum systems in thermal equilibrium with their environment, defined as systems where all states are broadened due to environmental coupling. For generic open quantum systems, it is shown that $S(T)rightarrow gln 2$ as $Trightarrow 0$, where $g$ is the number of localized states lying exactly at the chemical potential of the reservoir. For driven open quantum systems in a nonequilibrium steady state, it is shown that the local entropy $S({bf x}; T) rightarrow 0$ as $T({bf x})rightarrow 0$, except for cases of measure zero arising due to localized states, where $T({bf x})$ is the temperature measured by a local thermometer.
We analyze an open quantum system under the influence of more than one environment: a dephasing bath and a probability-absorbing bath that represents a decay channel, as encountered in many models of quantum networks. In our case, dephasing is modele
Our series of recent work on the transmission coefficient of open quantum systems in one dimension will be reviewed. The transmission coefficient is equivalent to the conductance of a quantum dot connected to leads of quantum wires. We will show that
We investigate the thermodynamic properties and the lattice stability of two-dimensional crystalline membranes, such as graphene and related compounds, in the low temperature quantum regime $Trightarrow0$. A key role is played by the anharmonic coupl
In this note, we reply to the comment made by E.I.Kats and V.V.Lebedev [arXiv:1407.4298] on our recent work Thermodynamics of quantum crystalline membranes [Phys. Rev. B 89, 224307 (2014)]. Kats and Lebedev question the validity of the calculation pr
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such