ﻻ يوجد ملخص باللغة العربية
Thermalization of isolated quantum systems has been studied intensively in recent years and significant progresses have been achieved. Here, we study thermalization of small quantum systems that interact with large chaotic environments under the consideration of Schr{o}dinger evolution of composite systems, from the perspective of the zeroth law of thermodynamics. Namely, we consider a small quantum system that is brought into contact with a large environmental system; after they have relaxed, they are separated and their temperatures are studied. Our question is under what conditions the small system may have a detectable temperature that is identical with the environmental temperature. This should be a necessary condition for the small quantum system to be thermalized and to have a well-defined temperature. By using a two-level probe quantum system that plays the role of a thermometer, we find that the zeroth law is applicable to quantum chaotic systems, but not to integrable systems.
The phenomenon described by our title should surprise no one. What may be surprising though is how easy it is to produce a quantum system with this feature; moreover, that system is one that is often used for the purpose of showing how systems equili
We show that systems with negative specific heat can violate the zeroth law of thermodynamics. By both numerical simulations and by using exact expressions for free energy and microcanonical entropy it is shown that if two systems with the same inten
The zeroth law of thermodynamics involves a transitivity relation (pairwise between three objects) expressed either in terms of `equal temperature (ET), or `in equilibrium (EQ) conditions. In conventional thermodynamics conditional on vanishingly wea
Boltzmanns ergodic hypothesis furnishes a possible explanation for the emergence of statistical mechanics in the framework of classical physics. In quantum mechanics, the Eigenstate Thermalization Hypothesis (ETH) is instead generally considered as a
We study the evolution of an open quantum system described by a dynamical semigroup having the Lindblad superoperator as a generator. This generator may have an eigenfunction with a unity eigenvalue, referred to as a constant of motion (COM). An open