ﻻ يوجد ملخص باللغة العربية
We demonstrate 32.5 Tbit/s 16QAM Nyquist WDM transmission over a total length of 227 km of SMF-28 without optical dispersion compensation. A number of 325 optical carriers are derived from a single laser and encoded with dual-polarization 16QAM data using sinc-shaped Nyquist pulses. As we use no guard bands, the carriers have a spacing of 12.5 GHz equal to the Nyquist bandwidth of the data. We achieve a high net spectral efficiency of 6.4 bit/s/Hz using a software-defined transmitter which generates the electrical modulator drive signals in real-time.
We review some currently discussed solutions for 400 Gbit/s inter-data center WDM transmission for up to 100 km. We focus on direct detected solutions, namely PAM4 and DMT, and present two WDM systems based on these formats.
A digraph is $m$-labelled if every arc is labelled by an integer in ${1, dots,m}$. Motivated by wavelength assignment for multicasts in optical networks, we introduce and study $n$-fibre colourings of labelled digraphs. These are colourings of the ar
Transmission of He-Ne (632 nm, 10 mW) Gaussian laser beam through Hexane and Water based magnetic nanofluids containing Fe3O4 nanoparticles show strong non-linear and magneto-optical effects. Application of external magnetic field (up to 1.7 Wb/m2) p
To date, no electro-optic platform enables devices with high bandwidth, small footprint, and low power consumption, while also enabling mass production. Here we demonstrate high-yield fabrication of high-speed graphene electro-absorption modulators u
Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simpl