ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator

554   0   0.0 ( 0 )
 نشر من قبل Juned Nassir Kemal
 تاريخ النشر 2019
والبحث باللغة English
 تأليف Juned N. Kemal




اسأل ChatGPT حول البحث

Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simple DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHz. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception. In our experiments, we demonstrate transmission of an aggregate data rate of 4.1 Tbit/s (23x45 GBd PDM-QPSK) over 75 km standard single-mode fiber (SSMF). To the best of our knowledge, this represents the first demonstration of a coherent WDM link that relies on QD-MLLD both at the transmitter and the receiver.



قيم البحث

اقرأ أيضاً

Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide range (1570 nm - 1600nm) continuous wavelength tunable dissipative solitons could be formed in an erbium doped fiber laser mode locked with few layer graphene.
We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-lo cking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices.
We demonstrate that the intrinsic properties of monolayer graphene allow it to act as a more effective saturable absorber for mode-locking fiber lasers compared to multilayer graphene. The absorption of monolayer graphene can be saturated at lower ex citation intensity compared to multilayer graphene, graphene with wrinkle-like defects, and functionalized graphene. Monolayer graphene has a remarkable large modulation depth of 95.3%, whereas the modulation depth of multilayer graphene is greatly reduced due to nonsaturable absorption and scattering loss. Picoseconds ultrafast laser pulse (1.23 ps) can be generated using monolayer graphene as saturable absorber. Due to the ultrafast relaxation time, larger modulation depth and lower scattering loss of monolayer graphene, it performs better than multilayer graphene in terms of pulse shaping ability, pulse stability and output energy.
We demonstrate the operation of Josephson junction arrays (JJA) driven by optical pulses generated by a mode-locked laser and an optical time-division multiplexer. A commercial photodiode converts the optical pulses into electrical ones in liquid hel ium several cm from the JJA. The performance of our custom-made mode-locked laser is sufficient for driving a JJA with low critical current at multiple Shapiro steps. Our optical approach is a potential enabler for fast and energy-efficient pulse drive without expensive high-bandwidth electrical pulse pattern generator, and without high-bandwidth electrical cabling crossing temperature stages. Our measurements and simulations motivate an improved integration of photodiodes and JJAs using, e.g., flip-chip techniques, in order to improve both the understanding and fidelity of pulse-driven Josephson Arbitrary Waveform Synthesizers (JAWS).
465 - David Hillerkuss 2012
We demonstrate 32.5 Tbit/s 16QAM Nyquist WDM transmission over a total length of 227 km of SMF-28 without optical dispersion compensation. A number of 325 optical carriers are derived from a single laser and encoded with dual-polarization 16QAM data using sinc-shaped Nyquist pulses. As we use no guard bands, the carriers have a spacing of 12.5 GHz equal to the Nyquist bandwidth of the data. We achieve a high net spectral efficiency of 6.4 bit/s/Hz using a software-defined transmitter which generates the electrical modulator drive signals in real-time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا