ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable graphene platform for Tbits/s data transmission

275   0   0.0 ( 0 )
 نشر من قبل Brian Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To date, no electro-optic platform enables devices with high bandwidth, small footprint, and low power consumption, while also enabling mass production. Here we demonstrate high-yield fabrication of high-speed graphene electro-absorption modulators using CVD-grown graphene. We minimize variation in device performance from graphene inhomogeneity over large area by engineering graphene-mode overlap and device capacitance to ensure high extinction ratio. We fabricate an 8 mm x 1 mm chip with 32 graphene electro-absorption modulators and measure 94% yield with bit error rate below the hard-decision forward error correction limit at 7 Gbits/s, amounting to a total aggregated data rate of 210 Gbits/s. Monte Carlo simulations show that data rates > 0.6 Tbits/s are within reach by further optimizing device cross-section, paving the way for graphene-based ultra-high data rate applications.

قيم البحث

اقرأ أيضاً

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multi-technique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.
The challenge of next generation datacom and telecom communication is to increase the available bandwidth while reducing the size, cost and power consumption of photonic integrated circuits. Silicon (Si) photonics has emerged as a viable solution to reach these objectives. Graphene, a single-atom thick layer of carbon5, has been recently proposed to be integrated with Si photonics because of its very high mobility, fast carrier dynamics and ultra-broadband optical properties. Here, we focus on graphene photodetectors for high speed datacom and telecom applications. High speed graphene photodetectors have been demonstrated so far, however the most are based on the photo-bolometric (PB) or photo-conductive (PC) effect. These devices are characterized by large dark current, in the order of milli-Amperes , which is an impairment in photo-receivers design, Photo-thermo-electric (PTE) effect has been identified as an alternative phenomenon for light detection. The main advantages of PTE-based photodetectors are the optical power to voltage conversion, zero-bias operation and ultra-fast response. Graphene PTE-based photodetectors have been reported in literature, however high-speed optical signal detection has not been shown. Here, we report on an optimized graphene PTE-based photodetector with flat frequency response up to 65 GHz. Thanks to the optimized design we demonstrate a system test leading to direct detection of 105 Gbit s-1 non-return to zero (NRZ) and 120 Gbit s-1 4-level pulse amplitude modulation (PAM) optical signals
We developed a technique that enables to replace a metallic waveguide cladding with a low-index (n $sim$ 1.4) material - CaF2 or BaF2 - that in addition is transparent from the mid-IR up to the visible range: elevated confinement is preserved while i ntroducing an optical entryway through the substrate. Replacing the metallic backplane also allows double-side patterning of the active region. Using this approach, we demonstrate strong light-matter coupling between an intersubband transition (lambda $sim$ 10 microns) and a dispersive resonator, at 300 K and at 78 K. Finally, we evaluate the potential of this approach as a platform for waveguiding in the mid-IR spectral range, with numerical simulations that reveal losses in the 1-10 cm$^{-1}$ range.
We present waveguide integrated high-speed Si photodetector integrated with silicon nitride (SiN) waveguide on SOI platform for short reach data communication in 850 nm wavelength band. We demonstrate a waveguide couple Si pin photodetector responsiv ity of 0.44 A/W at 25 V bias. The frequency response of the photodetector is evaluated by coupling of a femtosecond laser source through SiN grating coupler of the integrated photodetector. We estimate a 3dB bandwidth of 14 GHz at 20 V bias, highest reported bandwidth for a waveguide integrated Si photodetector. We also present detailed optoelectronic DC and AC characterisation of the fabricated devices. The demonstrated integrated photodetector could enable an integrated solution for scaling of short reach data communication and connectivity.
420 - Xihua Zou , Fang Zou , Zizheng Cao 2019
Microwave photonics (MWP) studies the interaction between microwave and optical waves for the generation, transmission and processing of microwave signals (i.e., three key domains), taking advantages of broad bandwidth and low loss offered by modern photonics. Integrated MWP using photonic integrated circuits (PICs) can reach a compact, reliable and green implementation. Most PICs, however, are recently developed to perform one or more functions restricted inside a single domain. In this paper, as highly desired, a multifunctional PIC is proposed to cover the three key domains. The PIC is fabricated on InP platform by monolithically integrating four laser diodes and two modulators. Using the multifunctional PIC, seven fundamental functions across microwave signal generation, transmission and processing are demonstrated experimentally. Outdoor field trials for electromagnetic environment surveillance along an in-service high-speed railway are also performed. The success to such a PIC marks a key step forward for practical and massive MWP implementations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا