توفر الجداول معرفة قيمة يمكن استخدامها للتحقق من العبارات النصية. في حين أن عددا من الأعمال قد نظر في التحقق من الحقائق القائم على الطاولة، فإن المحاذاة المباشرة للبيانات الجذابية مع الرموز في البيانات النصية نادرا ما توفرها. علاوة على ذلك، فإن تدريب نموذج التحقق من الحقائق المعممة يتطلب بيانات تدريبية ملصقة وفيرة. في هذه الورقة، نقترح نظام رواية لمعالجة هذه المشكلات. مستوحاة من السببية المتعددة، يحدد نظامنا من رجال الصمغ على مستوى الرمز في البيان مع تقدير البحار الذي يستند إلى التحقيق. يتيح تقدير Salience التعلم المعزز للتحقق من الحقائق من وجهات نظر. من منظور واحد، يقوم نظامنا بإجراء تنبؤ ممثن بالبرنامج المريح لتعزيز النموذج للمحاذاة والتفكير بين الطاولة والبيان. من المنظور الآخر، ينطبق نظامنا على توضيح تكبير البيانات الإدراك بالاستثناء لإنشاء مجموعة متنوعة من مثيلات التدريب عن طريق استبدال المصطلحات غير البارزة. تظهر النتائج التجريبية على Tabract التحسن الفعال من خلال تقنيات التعلم التي أدركها Carience المقترحة، مما يؤدي إلى أداء Sota الجديد على المعيار.
Tables provide valuable knowledge that can be used to verify textual statements. While a number of works have considered table-based fact verification, direct alignments of tabular data with tokens in textual statements are rarely available. Moreover, training a generalized fact verification model requires abundant labeled training data. In this paper, we propose a novel system to address these problems. Inspired by counterfactual causality, our system identifies token-level salience in the statement with probing-based salience estimation. Salience estimation allows enhanced learning of fact verification from two perspectives. From one perspective, our system conducts masked salient token prediction to enhance the model for alignment and reasoning between the table and the statement. From the other perspective, our system applies salience-aware data augmentation to generate a more diverse set of training instances by replacing non-salient terms. Experimental results on TabFact show the effective improvement by the proposed salience-aware learning techniques, leading to the new SOTA performance on the benchmark.
المراجع المستخدمة
https://aclanthology.org/
تهدف مهمة التحقق من الحقائق القائمة على الطاولة إلى التحقق مما إذا كان البيان المحدد مدعوم من الجدول شبه المنظم المحدد. يلعب المنطق الرمزي مع العمليات المنطقية دورا حاسما في هذه المهمة. الأساليب الحالية الاستفادة من البرامج التي تحتوي على معلومات منط
في هذه الورقة، نقترح نظام التحقق والتحقق من حقائق جديدة للتحقق من مطالبات محتوى ويكيبيديا.يسترد نظامنا صفحات ويكيبيديا ذات الصلة باستخدام Anserini، ويستخدم نموذج الإجابة على السؤال من Bert-Bert-bert-Berted لتحديد الأدلة الصحيحة، وتحقق من المطالبات با
يصف هذا العمل تكيف نموذج تسلسل متطلب مسبقا بمهمة التحقق من المطالبة العلمية في المجال الطبي الطبيعي.نقترح نظام يسمى Vert5erini الذي يستغل T5 لاسترجاع الملخص واختيار الجملة وتنبؤ التسمية، وهي ثلاثة مهام فرعية حرجة للتحقق من الادعاء.نقوم بتقييم خط أناب
لا يزال تقييم التلخيص مشكلة بحث مفتوحة: من المعروف أن المقاييس الحالية مثل الحمر محدودة وربطها بشكل سيء بأحكام بشرية.لتخفيف هذه المسألة، اقترحت العمل الحديث مقاييس التقييم التي تعتمد على الأسئلة في الإجابة على النماذج لتقييم ما إذا كان الملخص يحتوي ع
تعد فهم الجداول مهمة مهمة وذات صلة تتضمن فهم بنية الجدول وكذلك القدرة على مقارنة ومعلومات التباين داخل الخلايا. في هذه الورقة، نتعامل مع هذا التحدي من خلال تقديم مجموعة بيانات جديدة ومهام جديدة تعالج هذا الهدف في مهمة مشتركة في مهمة Semeval 2020 9: ا