مساعد شخصي ذكي (IPAS) مثل Amazon Alexa و Assistant Google وسيري سيري يمدد قدراتهم المدمجة من خلال دعم التطبيقات الصوتية التي طورها مطورو الطرف الثالث. في بعض الأحيان يكون المساعد الذكي غير قادر على الاستجابة بنجاح لأوامر صوت المستخدم (ويعرف أيضا باسم الكلام). هناك العديد من الأسباب بما في ذلك خطأ التعرف على الكلام التلقائي (ASR)، وفهم اللغة الطبيعية (NLU)، وتوجيه الكلام إلى تطبيق صوت غير ذي صحي أو ببساطة أن المستخدم يطلب إمكانية غير مدعومة بعد. يؤدي الفشل في التعامل مع أمر صوتي إلى إحباط العملاء. في هذه الورقة، نقدم نظام توصية مهارة الاحتياطية لاقتراح تطبيق صوتي إلى عميل أمر صوتي غير معالج. واحدة من التحديات البارزة في تطوير نظام موصوف المهارات ل IPAS هو ملاحظة جزئية. لحل مشكلة الملاحظة الجزئية، نقترح طريقة إعادة انتكاسات البيانات التعاونية (CDR). بالإضافة إلى ذلك، يحسن CDR أيضا تنوع المهارات الموصى بها. نقيم الطريقة المقترحة على حد سواء دون اتصال وعلى الإنترنت. تظهر نتائج التقييم غير المتصلة بالإنترنت أن النظام المقترح يتفوق على الأساس. تظهر نتائج اختبار Online A / B زيادة كبيرة من مقاييس تجربة العملاء.
Intelligent personal assistants (IPAs) such as Amazon Alexa, Google Assistant and Apple Siri extend their built-in capabilities by supporting voice apps developed by third-party developers. Sometimes the smart assistant is not able to successfully respond to user voice commands (aka utterances). There are many reasons including automatic speech recognition (ASR) error, natural language understanding (NLU) error, routing utterances to an irrelevant voice app or simply that the user is asking for a capability that is not supported yet. The failure to handle a voice command leads to customer frustration. In this paper, we introduce a fallback skill recommendation system to suggest a voice app to a customer for an unhandled voice command. One of the prominent challenges of developing a skill recommender system for IPAs is partial observation. To solve the partial observation problem, we propose collaborative data relabeling (CDR) method. In addition, CDR also improves the diversity of the recommended skills. We evaluate the proposed method both offline and online. The offline evaluation results show that the proposed system outperforms the baselines. The online A/B testing results show significant gain of customer experience metrics.
المراجع المستخدمة
https://aclanthology.org/
اكتسبت توصية الأخبار التلقائية الكثير من الاهتمام من المجتمع الأكاديمي والصناعة. تكشف الدراسات الحديثة أن مفتاح هذه المهمة يكمن في تعلم التمثيل الفعال في كل من الأخبار والمستخدمين. تعمل الأعمال الحالية عادة عنوان الأخبار والمحتوى بشكل منفصل مع إهمال
تقوم أنظمة الترجمة التقليدية المدربين على وثائق مكتوبة بشكل جيد للترجمة المستندة إلى النصوص ولكن ليس كذلك للتطبيقات المستندة إلى الكلام.نحن نهدف إلى تكييف نماذج الترجمة إلى الكلام عن طريق إدخال أخطاء معجمية حقيقية من أخطاء ASR والتجزئة من علامات التر
تم إحراك المصالح المتزايدة في أنظمة الموافقة على المحادثة (CRS)، والتي تستكشف تفضيل المستخدم من خلال تفاعلات المحادثة من أجل تقديم توصية مناسبة. ومع ذلك، لا يزال هناك نقص في القدرة في CRS الحالية إلى (1) اجتياز مسارات التفكير المتعددة على المعرفة الأ
إن الاندماج المثالي للوكلاء المستقلين في عالم بشري يعني أنهم قادرون على التعاون على الشروط الإنسانية.على وجه الخصوص، تلعب نظرية العقل دورا مهما في الحفاظ على أرضية مشتركة أثناء التعاون البشري والتواصل.لتمكين نظرية العقل النمذجة في التفاعلات الموجزة،
في حين أن التعرف التلقائي على الكلام قد أظهر عرضة لهجمات الخصومة، فإن الدفاعات ضد هذه الهجمات لا تزال متأخرة.يمكن كسر الدفاعات الحالية والساذجة جزئيا مع هجوم على التكيف.في مهام التصنيف، تبين أن نموذج التجانس العشوائي فعال في النماذج الدفاعية.ومع ذلك،