ﻻ يوجد ملخص باللغة العربية
Recently observed strongly-coupled rotational bands associated with the $ u [505]{11/2}^-$ quasiparticle state are studied by means of a microscopic tilted axis cranking (TAC) model. The results of calculation for the routhians and the $B(M1)/B(E2)$ ratios are investigated in the light of other existing models, i.e. the strong-coupling model and the conventional cranking model. It is demonstrated that only the TAC model can successfully reproduce these two observables at the same time. The reason of the success is clarified by making connections between these models.
The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electromagnet
We report the results of recent measurements of the spectroscopic quadrupole moments of high-spin isomers. For the K=35/2- five-quasiparticle isomer in 179W we measured Q_s=4.00(+0.83)(-1.06)eb. It corresponds to a smaller deformation compared to the
A collective bands of positive and negative parity could be composed of the vibrations and rotations. The rotations of the octupole configurations can be based either on the axial or the non-axial octupole vibrations. A consistent approach to the qua
By employing the angular momentum projection technique we propose a method to reliably calculate the quantum spectrum of nuclear collective rotation. The method utilizes several cranked mean-field states with different rotational frequencies and they
Structure of eight superdeformed bands in the nucleus 151Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exist and predictions related