ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic Study of Superdeformed Rotational Bands in 151Tb

80   0   0.0 ( 0 )
 نشر من قبل Dobaczewski
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Structure of eight superdeformed bands in the nucleus 151Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exist and predictions related to the structure of rotational bands calculated within the two models are nearly parallel. An interpretation scenario for the structure of the superdeformed bands is presented and predictions related to the exit spins are made. Small but systematic discrepancies between experiment and theory, analyzed in terms of the dynamical moments, J(2), are shown to exist. The pairing correlations taken into account by using the particle-number-projection technique are shown to increase the disagreement. Sources of these systematic discrepancies are discussed -- they are most likely related to the yet not optimal parametrization of the nuclear interactions used.

قيم البحث

اقرأ أيضاً

Experimentally observed superdeformed (SD) rotational bands in $^{36}$Ar and $^{40}$Ar are studied by the cranked shell model (CSM) with the paring correlations treated by a particle-number-conserving (PNC) method. This is the first time the PNC-CSM calculations are performed on the light nuclear mass region around $A=40$. The experimental kinematic moments of inertia $J^{(1)}$ versus rotational frequency are reproduced well. The backbending of the SD band at frequency around $hbaromega=1.5$ MeV in $^{36}$Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton $1d_{5/2}[202]5/2$ pairs and $1f_{7/2}[321]3/2$ pairs, which is the consequence of the band crossing between the $1d_{5/2}[202]5/2$ and $1f_{7/2}[321]3/2$ configuration states. The gentle upbending at the low frequency of the SD band in $^{40}$Ar is mainly effected by the alignments of the neutron $1f_{7/2}[321]3/2$ pairs and proton $1d_{5/2}[202]5/2$ pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands.
182 - K.Yoshida , M.Matsuo 1998
Damping of rotational motion in superdeformed Hg and Dy-region nuclei is studied by means of cranked shell model diagonalization. It is shown that a shell oscillation in single-particle alignments affects significantly properties of rotational dampin g. Onset properties of damping and damping width for Hg are quite different from those for Dy-region superdeformed nuclei.
107 - Y.R.Shimizu , M.Matsuo , K.Yoshida 2000
Decay of the superdeformed bands have been studied mainly concentrating upon the decay-out spin, which is sensitive to the tunneling probability between the super- and normal-deformed wells. Although the basic features are well understood by the calc ulations, it is difficult to precisely reproduce the decay-out spins in some cases. Comparison of the systematic calculations with experimental data reveals that values of the calculated decay-out spins scatter more broadly around the average value in both the $A approx$ 150 and 190 regions, which reflects the variety of calculated tunneling probability in each band.
108 - K.Yoshida , M.Matsuo , Y.R.Shimizu 2000
We construct a microscopic model of thermally excited superdeformed states that describes both the barrier penetration mechanism, leading to the decay-out transitions to normal deformed states, and the rotational damping causing fragmentation of rota tional E2 transitions. We describe the barrier penetration by means of a tunneling path in the two-dimensional deformation energy surface, which is calculated with the cranked Nilsson-Strutinsky model. The individual excited superdeformed states and associated E2 transition strengths are calculated by the shell model diagonalization of the many-particle many-hole excitations interacting with the delta-type residual two-body force. The effect of the decay-out on the excited superdeformed states are discussed in detail for $^{152}$Dy, $^{143}$Eu and $^{192}$Hg.
A collective bands of positive and negative parity could be composed of the vibrations and rotations. The rotations of the octupole configurations can be based either on the axial or the non-axial octupole vibrations. A consistent approach to the qua drupole-octupole collective vibrations coupled with the rotational motion enables to distinguish between various scenarios of disappearance of the E2 transitions in negative-parity bands. The here presented theoretical estimates are compared with the recent experimental energies and transition probabilities in and between the ground-state and low-energy negaive-parity bands in $^{156}$Dy. A realistic collective Hamiltonian contains the potential energy term obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS approach and deformation-dependent mass tensor defined in vibrational-rotational, nine-dimensional collective space. The symmetrization procedure ensures the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. This quadrupole-octupole collective approach may also allow to find and/or verify some fingerprints of possible high-order symmetries (e.g. tetrahedral, octahedral,...) in nuclear collective bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا