ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on (Meta)stable Brane Configurations in MQCD

72   0   0.0 ( 0 )
 نشر من قبل Iosif Bena
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the M-theory version of SQCD which is known as MQCD. In the IIA limit, this theory appears to have a supersymmetry-breaking brane configuration which corresponds to the meta-stable state of N=1 SU(Nc) SQCD. However, the behavior at infinity of this non-supersymmetric brane construction differs from that of the supersymmetric ground state of MQCD. We interpret this to mean that it is not a meta-stable state in MQCD, but rather a state in another theory. This provides a concrete example of the fact that, while MQCD accurately describes the supersymmetric features of SCQD, it fails to reproduce its non-supersymmetric features (such as meta-stable states) not only quantitatively but also qualitatively.

قيم البحث

اقرأ أيضاً

111 - Changhyun Ahn 2008
Starting from the N=1 SU(N_c) x SU(N_c) gauge theory with fundamental and bifundamental flavors, we apply the Seiberg dual to the first gauge group and obtain the N=1 dual gauge theory with dual matters including the gauge singlets. By analyzing the F-term equations of the superpotential, we describe the intersecting type IIA brane configuration for the meta-stable nonsupersymmetric vacua of this gauge theory. By introducing an orientifold 6-plane, we generalize to the case for N=1 SU(N_c) x SO(N_c) gauge theory with fundamental and bifundamental flavors. Finally, the N=1 SU(N_c) x Sp(N_c) gauge theory with matters is also described very briefly.
Brane world six dimensional scenarios with string like metric has been proposed to alleviate the problem of field localization. However, these models have been suffering from some drawbacks related with energy conditions as well as from difficulties to find analytical solutions. In this work, we propose a model where a brane is made of a scalar field with bounce-type configurations and embedded in a bulk with a string-like metric. This model produces a sound AdS scenario where none of the important physical quantities is infinite. Among these quantities are the components of the energy momentum tensor, which have its positivity ensured by a suitable choice of the bounce configurations. Another advantage of this model is that the warp factor can be obtained analytically from the equations of motion for the scalar field, obtaining as a result a thick brane configuration, in a six dimensional context. Moreover, the study of the scalar field localization in these scenario is done.
In a recent paper [1] we showed that N=1 supersymmetric QCD in the presence of certain superpotential deformations has a rich landscape of supersymmetric and non-supersymmetric vacua. In this paper we embed this theory in string theory as a low energ y theory of intersecting NS and D-branes. We find that in the region of parameter space of brane configurations that can be reliably studied using classical string theory, the vacuum structure is qualitatively similar to that in the field theory regime. Effects that in field theory come from one loop corrections arise in string theory as classical gravitational effects. The brane construction provides a useful guide to the structure of stable and metastable gauge theory vacua.
We find new and compelling evidence for the meta-stability of SUSY-breaking states in holographic backgrounds whose consistency has been the source of ongoing disagreements in the literature. As a concrete example, we analyse anti-D3 branes at the ti p of the Klebanov-Strassler (KS) throat. Using the blackfold formalism we examine how temperature affects the conjectured meta-stable state and determine whether and how the existing extremal results generalize when going beyond extremality. In the extremal limit we exactly recover the results of Kachru, Pearson and Verlinde (KPV), in a regime of parameter space that was previously inaccesible. Away from extremality we uncover a meta-stable black NS5 state that disappears near a geometric transition where black anti-D3 branes and black NS5 branes become indistinguishable. This is remarkably consistent with complementary earlier results based on the analysis of regularity conditions of backreacted solutions. We therefore provide highly non-trivial evidence for the meta-stability of anti-branes in non-compact throat geometries since we find a consistent picture over different regimes in parameter space.
Decoupling limits of physical interest occur in regions of space--time where the string coupling diverges. This is illustrated in the celebrated example of five-branes. There are several ways to overcome this strong-coupling problem. We review those which are somehow related to two-dimensional conformal field theories. One method consists of distributing the branes over transverse space, either on a circle or over a sphere. Those distributions are connected to conformal field theories by T-dualities or lead to a new kind of sigma model where the target space is a patchwork of pieces of exact conformal-field-theory target spaces. An alternative method we discuss is the introduction of diluted F-strings, which trigger a marginal deformation of an AdS$_3times S^3times T^4$ background with a finite string coupling. Our discussion raises the question of finding brane configurations, their spectrum, their geometry, and their interpretation in terms of two-dimensional conformal models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا