ﻻ يوجد ملخص باللغة العربية
In a recent paper [1] we showed that N=1 supersymmetric QCD in the presence of certain superpotential deformations has a rich landscape of supersymmetric and non-supersymmetric vacua. In this paper we embed this theory in string theory as a low energy theory of intersecting NS and D-branes. We find that in the region of parameter space of brane configurations that can be reliably studied using classical string theory, the vacuum structure is qualitatively similar to that in the field theory regime. Effects that in field theory come from one loop corrections arise in string theory as classical gravitational effects. The brane construction provides a useful guide to the structure of stable and metastable gauge theory vacua.
We study deformations of N=1 supersymmetric QCD that exhibit a rich landscape of supersymmetric and non-supersymmetric vacua.
We argue that tachyon-free type I string vacua with supersymmetry breaking in the open sector at the string scale can be interpreted, via S and T-duality arguments, as metastable vacua of supersymmetric type I superstring. The dynamics of the process
We study the geometric interpretation of metastable vacua for systems of D3 branes at non isolated toric deformable singularities. Using the L^{aba} examples, we investigate the relations between the field theoretic susy breaking and restoration and the complex deformations of the CY singularities.
It is widely considered that the classical Higgs branch of 4d $mathcal{N}=2$ SQCD is a well understood object. However there is no satisfactory understanding of its structure. There are two complications: (1) the Higgs branch chiral ring contains nil
We investigate the recent suggestion that a Minkowski vacuum is either absolutely stable, or it has a divergent decay rate and thus fails to have a locally Minkowski description. The divergence comes from boost integration over momenta of the vacuum