ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-Stable Brane Configuration of Product Gauge Groups

113   0   0.0 ( 0 )
 نشر من قبل Changhyun Ahn
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Changhyun Ahn




اسأل ChatGPT حول البحث

Starting from the N=1 SU(N_c) x SU(N_c) gauge theory with fundamental and bifundamental flavors, we apply the Seiberg dual to the first gauge group and obtain the N=1 dual gauge theory with dual matters including the gauge singlets. By analyzing the F-term equations of the superpotential, we describe the intersecting type IIA brane configuration for the meta-stable nonsupersymmetric vacua of this gauge theory. By introducing an orientifold 6-plane, we generalize to the case for N=1 SU(N_c) x SO(N_c) gauge theory with fundamental and bifundamental flavors. Finally, the N=1 SU(N_c) x Sp(N_c) gauge theory with matters is also described very briefly.

قيم البحث

اقرأ أيضاً

We examine the M-theory version of SQCD which is known as MQCD. In the IIA limit, this theory appears to have a supersymmetry-breaking brane configuration which corresponds to the meta-stable state of N=1 SU(Nc) SQCD. However, the behavior at infinit y of this non-supersymmetric brane construction differs from that of the supersymmetric ground state of MQCD. We interpret this to mean that it is not a meta-stable state in MQCD, but rather a state in another theory. This provides a concrete example of the fact that, while MQCD accurately describes the supersymmetric features of SCQD, it fails to reproduce its non-supersymmetric features (such as meta-stable states) not only quantitatively but also qualitatively.
We consider an N=2 supersymmetric SU(2) times U(1) gauge theory with N_f=2 massless flavors and a Fayet-Iliopoulos (FI) term. In the presence of the FI term, supersymmetry is spontaneously broken at tree level (on the Coulomb branch), leaving a pseud o-flat direction in the classical potential. This vacuum degeneracy is removed once quantum corrections are taken into account. Due to the SU(2) gauge dynamics, the effective potential exhibits a local minimum at the dyon point, where not only supersymmetry but also U(1)_R symmetry is broken, while a supersymmetric vacuum would be realized toward infinity with the runaway behavior of the potential. This local minimum is found to be parametrically long-lived. Interestingly, from a phenomenological point of view, in this meta-stable vacuum the massive hypermultiplets inherent in the theory play the role of the messenger fields in the gauge mediation scenario, when the Standard Model gauge group is embedded into their flavor symmetry.
We investigate supersymmetry breaking meta-stable vacua in N=2, SU(2)times U(1) gauge theory with N_f=2 massless flavors perturbed by the addition of small N=1 preserving mass terms in a presence of a Fayet-Iliopoulos term. We derive the low energy e ffective theory by using the exact results of N=2 supersymmetric QCD and examine the effective potential. At the classical level, the theory has supersymmetric vacua on Coulomb and Higgs branches. We find that supersymmetry on the Coulomb branch is dynamically broken as a consequence of the strong dynamics of SU(2) gauge symmetry while the supersymmetric vacuum on the Higgs branch remains. We also estimate the lifetimes of the local minima on the Coulomb branch. We find that they are sufficiently long and therefore the local vacua we find are meta-stable.
We study thermal effects on a decay process of a false vacuum in type IIA string theory. At finite temperature, the potential of the theory is corrected and also thermally excited modes enhance the decay rate. The false vacuum can accommodate a strin g-like object. This cosmic string makes the bubble creation rate much larger and causes an inhomogeneous vacuum decay. We investigate thermal corrections to the DBI action for the bubble/string bound state and discuss a thermally assisted tunneling process. We show that thermally excited states enhance the tunneling rate of the decay process, which makes the life-time of the false vacuum much shorter.
82 - A. Pinzul , A. Stern 2007
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measur es and covariant derivatives on this space. The covariant derivative can be expressed in terms of connections in the usual way giving rise to new degrees of freedom for noncommutative theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا