ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthorhombic Phase of Crystalline Polyethylene: A Monte Carlo Study

170   0   0.0 ( 0 )
 نشر من قبل Roman Martonak
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Martonak




اسأل ChatGPT حول البحث

In this paper we present a classical Monte Carlo simulation of the orthorhombic phase of crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles and periodic boundary conditions. We used a recently developed algorithm which apart from standard Metropolis local moves employs also global moves consisting of displacements of the center of mass of the whole chains in all three spatial directions as well as rotations of the chains around an axis parallel to the crystallographic c-direction. Our simulations are performed in the NpT ensemble, at zero pressure, and extend over the whole range of temperatures in which the orthorhombic phase is experimentally known to be stable (10 - 450 K). In order to investigate the finite-size effects in this extremely anisotropic crystal, we used different system sizes and different chain lengths, ranging from C_12 to C_96 chains, the total number of atoms in the super-cell being between 432 and 3456. We show here the results for structural parameters, such as the orthorhombic cell parameters a,b,c, and the setting angle of the chains, as well as internal parameters of the chains, such as the bond lengths and angles. Among thermodynamic quantities, we present results for thermal expansion coefficients, elastic constants and specific heat. We discuss the temperature dependence of the measured quantities as well as the related finite-size effects. In case of lattice parameters and thermal expansion coefficients, we compare our results to those obtained from other theoretical approaches as well as to some available experimental data. We also suggest some possible ways of extending this study.



قيم البحث

اقرأ أيضاً

110 - R. Martonak 1997
In this paper we present a Path Integral Monte Carlo (PIMC) simulation of the orthorhombic phase of crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles. This work represents a quantum extension of o ur recent classical simulation (J. Chem. Phys. 106, 8918 (1997)). It is aimed both at exploring the applicability of the PIMC method on such polymer crystal systems, as well as on a detailed assessment of the importance of quantum effects on different quantities. We used the $NpT$ ensemble and simulated the system at zero pressure in the temperature range 25 - 300 K, using Trotter numbers between 12 and 144. In order to investigate finite-size effects, we used chains of two different lengths, C_12 and C_24, corresponding to the total number of atoms in the super-cell being 432 and 864, respectively. We show here the results for structural parameters, like the orthorhombic lattice constants a,b,c, and also fluctuations of internal parameters of the chains, such as bond lengths and bond and torsional angles. We have also determined the internal energy and diagonal elastic constants c_11, c_22 and c_33. We discuss the temperature dependence of the measured quantities and compare to that obtained from the classical simulation. For some quantities, we discuss the way they are related to the torsional angle fluctuation. In case of the lattice parameters we compare our results to those obtained from other theoretical approaches as well as to some available experimental data. In order to study isotope effects, we simulated also a deuterated polyethylene crystal at a low temperature. We also suggest possible ways of extending this study and present some general considerations concerning modeling of polymer crystals.
108 - v{S}. Masys , V. Jonauskas 2016
By investigating the crystalline structure of ground-state orthorhombic SrRuO$_3$, we present a benchmark study of some of the most popular density functional theory (DFT) approaches from the local density approximation (LDA), generalized-gradient ap proximation (GGA), and hybrid functional families. Recent experimental success in stabilizing tetragonal and monoclinic phases of SrRuO$_3$ at room temperature sheds a new light on the ability to accurately describe geometry of this material by applying first-principles calculations. Therefore, our work is aimed to analyse the performance of different DFT functionals and provide some recommendations for future research of SrRuO$_3$. A comparison of the obtained results to the low-temperature experimental data indicates that revised GGAs for solids are the best choice for the lattice constants and volume due to their nice accuracy and low computational cost. However, when tilting and rotation angles appear on the scene, a combination of the revised GGAs with the hybrid scheme becomes the most preferable option. It is important to note that a worse performance of LDA functional is somewhat compensated by its realistic reproduction of electronic and magnetic structure of SrRuO$_3$, making it a strong competitor if the physical features are also taken into account.
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is nonmetallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases.
We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the trends of well-converged plane-wave DFT calculations for the size dependence of the optical gap, but they predict gaps that are 1-2 eV higher. They confirm that quantum confinement effects disappear in diamondoids larger than 1 nm, which have gaps below that of bulk diamond. Our QMC calculations predict a small exciton binding energy and a negative electron affinity (NEA) for diamondoids up to 1 nm, resulting from the delocalized nature of the lowest unoccupied molecular orbital. The NEA suggests a range of possible applications of diamondoids as low-voltage electron emitters.
Two-dimensional (2D) post-transition metal chalcogenides (PTMC) have attracted attention due to their suitable band gaps and lower exciton binding energies, making them more appropriate for electronic, optical and water-splitting devices than graphen e and monolayer transition metal dichalcogenides (TMDs). Of the predicted 2D PTMCs, GaSe has been reliably synthesized and experimentally characterized. Despite this fact, quantities such as lattice parameters and band character vary significantly depending on which density functional theory (DFT) functional is used. Although many-body perturbation theory (GW approximation) has been used to correct the electronic structure and obtain the excited state properties of 2D GaSe, and solving the Bethe-Salpeter equation (BSE) has been used to find the optical gap, we find that the results depend strongly on the starting wavefunction. In attempt to correct these discrepancies, we employed the many-body Diffusion Monte Carlo (DMC) method to calculate the ground and excited state properties of GaSe because DMC has a weaker dependence on the trial wavefunction. We benchmark these results with available experimental data, DFT [local-density approximation, Perdew-Burke-Ernzerhof (PBE), strongly constrained and appropriately normed (SCAN) meta-GGA, and hybrid (HSE06) functionals] and GW-BSE (using PBE and SCAN wavefunctions) results. Our findings confirm monolayer GaSe is an indirect gap semiconductor (Gamma-M) with a quasiparticle electronic gap in close agreement with experiment and low exciton binding energy. We also benchmark the optimal lattice parameter, cohesive energy and ground state charge density with DMC and various DFT methods. We aim to present a terminal theoretical benchmark for pristine monolayer GaSe, which will aide in the further study of 2D PTMCs using DMC methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا