ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Emission from Diamondoids: A Diffusion Quantum Monte Carlo Study

121   0   0.0 ( 0 )
 نشر من قبل Neil Drummond
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the trends of well-converged plane-wave DFT calculations for the size dependence of the optical gap, but they predict gaps that are 1-2 eV higher. They confirm that quantum confinement effects disappear in diamondoids larger than 1 nm, which have gaps below that of bulk diamond. Our QMC calculations predict a small exciton binding energy and a negative electron affinity (NEA) for diamondoids up to 1 nm, resulting from the delocalized nature of the lowest unoccupied molecular orbital. The NEA suggests a range of possible applications of diamondoids as low-voltage electron emitters.



قيم البحث

اقرأ أيضاً

We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurat e and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O$_2$, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.
125 - Sam Azadi , , Thomas D. Kuhne 2016
We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthal py-pressure phase diagram. Specifically, we find that the C2/c HS$_2$ structure is persistent up to 440~GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4$_1$/amd HS structure over the whole pressure range from 150 to 400 GPa. Moreover, we predict that the Im-3m phase is the most likely candidate for H$_3$S, which is consistent with recent experimental x-ray diffraction measurements.
Secondary electron emission (SEE) from inner linings of plasma chambers in electric thrusters for space propulsion can have a disruptive effect on device performance and efficiency. SEE is typically calculated using elastic and inelastic electron sca ttering theory by way of Monte Carlo simulations of independent electron trajectories. However, in practice the method can only be applied for ideally smooth surfaces and thin films, not representative of real material surfaces. Recently, micro-architected surfaces with nanometric features have been proposed to mitigate SEE and ion-induced erosion in plasma-exposed thruster linings. In this paper, we propose an approach for calculating secondary electron yields from surfaces with arbitrarily-complex geometries using an extension of the emph{ray tracing} Monte Carlo (RTMC) technique. We study nanofoam structures with varying porosities as representative micro-architected surfaces, and use RTMC to generate primary electron trajectories and track secondary electrons until their escape from the outer surface. Actual surfaces are represented as a discrete finite element meshes obtained from X-ray tomography images of tungsten nanofoams. At the local level, primary rays impinging into surface elements produce daughter rays of secondary electrons whose number, energies and angular characteristics are set by pre-calculated tables of SEE yields and energies from ideally-flat surfaces. We find that these micro-architected geometries can reduce SEE by up to 50% with respect to flat surfaces depending on porosity and primary electron energy.
102 - G.J. Conduit , P.D. Haynes 2008
A many-flavor electron gas (MFEG) in a semiconductor with a valley degeneracy ranging between 6 and 24 was analyzed using diffusion Monte Carlo (DMC) calculations. The DMC results compare well with an analytic expression derived by one of us [Phys. R ev. B 78, 035111 (2008)] for the total energy to within 1% over an order of magnitude range of density, which increases with valley degeneracy. For Bi2Te3 (six-fold valley degeneracy) the applicable charge carrier densities are between 7*10^19cm^{-3} and 2*10^20cm^{-3}. DMC calculations distinguished between an exact and a useful approximate expression for the 24-fold degenerate MFEG polarizability for wave numbers 2p_F<q<7p_F. The analytical result for the MFEG is generalized to inhomogeneous systems by means of a gradient correction, the validity range of this approach is obtained. Employed within a density functional theory calculation this approximation compares well with DMC results for a quantum dot.
Diffusion Monte Carlo (DMC) calculations were performed for an accurate description of the nature of the O$_2$ adsorption on a single layer graphene. We investigated the stable orientation of O$_2$ at a specific adsorption site as well as its equilib rium adsorption energy. At equilibrium adsorption distances, an O$_2$ molecule was found to prefer a horizontal orientation, where the O-O bond is parallel to the graphene surface, to the vertical orientation. However, the vertical orientation is favored at the O$_2$-graphene distances shorter than the equilibrium distance, which could be understood by the steric repulsion between O and C atoms. Contrary to previous DFT calculations, our DMC calculations show that the midpoint of a C-C bond (a bridge site) is energetically preferred for the O$_2$ adsorption to a center of a hexagonal ring (a hollow site). The lowest DMC adsorption energy was found at an intermediate point between a hollow and a bridge site, where the O$_2$ adsorption energy was estimated to be -0.142(4) eV that was in very good agreement with the recently-reported experimental value. Finally, we have found that O$_2$ is very diffusive on the surface of graphene with the diffusion barrier along a bridge-hollow-bridge path being as small as ~ 11 meV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا