ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) post-transition metal chalcogenides (PTMC) have attracted attention due to their suitable band gaps and lower exciton binding energies, making them more appropriate for electronic, optical and water-splitting devices than graphene and monolayer transition metal dichalcogenides (TMDs). Of the predicted 2D PTMCs, GaSe has been reliably synthesized and experimentally characterized. Despite this fact, quantities such as lattice parameters and band character vary significantly depending on which density functional theory (DFT) functional is used. Although many-body perturbation theory (GW approximation) has been used to correct the electronic structure and obtain the excited state properties of 2D GaSe, and solving the Bethe-Salpeter equation (BSE) has been used to find the optical gap, we find that the results depend strongly on the starting wavefunction. In attempt to correct these discrepancies, we employed the many-body Diffusion Monte Carlo (DMC) method to calculate the ground and excited state properties of GaSe because DMC has a weaker dependence on the trial wavefunction. We benchmark these results with available experimental data, DFT [local-density approximation, Perdew-Burke-Ernzerhof (PBE), strongly constrained and appropriately normed (SCAN) meta-GGA, and hybrid (HSE06) functionals] and GW-BSE (using PBE and SCAN wavefunctions) results. Our findings confirm monolayer GaSe is an indirect gap semiconductor (Gamma-M) with a quasiparticle electronic gap in close agreement with experiment and low exciton binding energy. We also benchmark the optimal lattice parameter, cohesive energy and ground state charge density with DMC and various DFT methods. We aim to present a terminal theoretical benchmark for pristine monolayer GaSe, which will aide in the further study of 2D PTMCs using DMC methods.
The study of alloys using computational methods has been a difficult task due to the usually unknown stoichiometry and local atomic ordering of the different structures experimentally. In order to combat this, first-principles methods have been coupl
Recent experiments revealed that monolayer $alpha$-RuCl$_3$ can be obtain by chemical exfoliation method and exfoliation or restacking of nanosheets can manipulate the magnetic properties of the materials. In this present paper, the electronic and ma
We study a three-orbital Su-Schrieffer-Heeger model defined on a two-dimensional Lieb lattice and in the negative charge transfer regime using determinant quantum Monte Carlo. At half-filling (1 hole/unit cell), we observe a bipolaron insulating phas
Charged defects in 2D materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. Advancement of these technologies requires rational design of ideal defect centers, demanding reliable computation me
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte