ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulation of the high mobility two-dimensional electrons in Si/SiGe using atomic-layer-deposited gate dielectric

158   0   0.0 ( 0 )
 نشر من قبل Keji Lai
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metal-oxide-semiconductor field-effect transistors (MOSFETs) using atomic-layer-deposited (ALD) Al$_2$O$_3$ as the gate dielectric are fabricated on the Si/Si$_{1-x}$Ge$_x$ heterostructures. The low-temperature carrier density of a two-dimensional electron system (2DES) in the strained Si quantum well can be controllably tuned from 2.5$times10^{11}$cm$^{-2}$ to 4.5$times10^{11}$cm$^{-2}$, virtually without any gate leakage current. Magnetotransport data show the homogeneous depletion of 2DES under gate biases. The characteristic of vertical modulation using ALD dielectric is shown to be better than that using Schottky barrier or the SiO$_2$ dielectric formed by plasma-enhanced chemical-vapor-deposition(PECVD).



قيم البحث

اقرأ أيضاً

We report the observation of an electron gas in a SiGe/Si/SiGe quantum well with maximum mobility up to 240 m^2/Vs, which is noticeably higher than previously reported results in silicon-based structures. Using SiO, rather than Al_2O_3, as an insulat or, we obtain strongly reduced threshold voltages close to zero. In addition to the predominantly small-angle scattering well known in the high-mobility heterostructures, the observed linear temperature dependence of the conductivity reveals the presence of a short-range random potential.
Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer char acteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO$_{2}$ and TiO$_{2}$ in a triple-layer configuration, we achieve the first CNT FETs with consistent and narrowly distributed memory effects in their transfer characteristics.
We report magnetotransport measurements of a gated InSb quantum well (QW) with high quality Al2O3 dielectrics (40 nm thick) grown by atomic layer deposition. The magnetoresistance data demonstrate a parallel conduction channel in the sample at zero g ate voltage (Vg). A good interface between Al2O3 and the top InSb layer ensures that the parallel channel is depleted at negative Vg and the density of two-dimensional electrons in the QW is tuned by Vg with a large ratio of 6.5x1014 m-2V-1 but saturates at large negative Vg. These findings are closely related to layer structures of the QW as suggested by self-consistent Schrodinger-Poisson simulation and two-carrier model.
127 - X. Mi , T. M. Hazard , C. Payette 2015
We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms in this increasingly important materials system. By analy zing data from 26 wafers with different heterostructure growth profiles we observe a strong correlation between the background oxygen concentration in the Si quantum well and the maximum mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000 cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator transition at a critical density 0.46 x 10^11/cm^2. We extract a valley splitting of approximately 150 microeV at a magnetic field of 1.8 T. These results provide evidence that undoped Si/SiGe heterostructures are suitable for the fabrication of few-electron quantum dots.
Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnet ic, spintronic and topological phenomena and applications. In bulk materials, SOC strength is a constant that cannot be modified. Here we demonstrate SOC and intrinsic spin-splitting in atomically thin InSe, which can be modified over an unprecedentedly large range. From quantum oscillations, we establish that the SOC parameter alpha is thickness-dependent; it can be continuously modulated over a wide range by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Surprisingly, alpha could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا