ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning Negative Differential Resistance in a Molecular Film

154   0   0.0 ( 0 )
 نشر من قبل Michael Grobis
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed tunable negative differential resistance (NDR) in scanning tunneling spectroscopy measurements of a double layer of C60 molecules on a metallic surface. Using a simple model we show that the observed NDR behavior is explained by voltage-dependent changes in the tunneling barrier height.



قيم البحث

اقرأ أيضاً

Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices in the last more than half a century. Here, we report NDR behavior formation in randomly oriented graphene-like nanostructures up to 37 K and high on-current density up to 10^5 A/cm^2. Our modeling of the current-voltage characteristics, including the self-heating effects, suggests that strong temperature dependence of the low-bias resistance is responsible for the nonlinear electrical behavior. Our findings open opportunities for the practical realization of the on-demand NDR behavior in nanostructures of 2D and 3D material-based devices via heat management in the conducting films and the underlying substrates.
172 - Junjie Liu , Dvira Segal 2020
We unravel the critical role of vibrational mode softening in single-molecule electronic devices at high bias. Our theoretical analysis is carried out with a minimal model for molecular junctions, with mode softening arising due to quadratic electron -vibration couplings, and by developing a mean-field approach. We discover that the negative sign of the quadratic electron-vibration coupling coefficient can realize at high voltage a sharp negative differential resistance (NDR) effect with a large peak-to-valley ratio. Calculated current-voltage characteristics, obtained based on ab initio parameters for a nitro-substituted oligo(phenylene ethynylene) junction, agree very well with measurements. Our results establish that vibrational mode softening is a crucial effect at high voltage, underlying NDR, a substantial diode effect, and the breakdown of current-carrying molecular junctions.
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 uA/um2 and 2.5 uA/um2, and peak -to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 K and 300 K, respectively.
Current-controlled (also known as S-type) negative differential resistance (NDR) is of crucial importance to many emerging applications including neuromorphic computing and high-density memristors integration. However, the experimental realization of S-type NDR based on conventional mechanisms poses demanding requirements on materials, which greatly limits their potential applications. Here, we experimentally identify that semiconducting transition metal dichalcogenides (TMDs) can host a bipolar S-type NDR devices. Theoretical simulations indicate that the origin of the NDR in these devices arises from a thermal feedback mechanism. Furthermore, we demonstrate the potential applications of TMDs based S-type NDR device in signal processing and neuromorphic electronics.
136 - Nuo Yang , Nianbei Li , Lei Wang 2007
We study thermal properties of one dimensional(1D) harmonic and anharmonic lattices with mass gradient. It is found that the temperature gradient can be built up in the 1D harmonic lattice with mass gradient due to the existence of gradons. The heat flow is asymmetric in the anharmonic lattices with mass gradient. Moreover, in a certain temperature region the {it negative differential thermal resistance} is observed. Possible applications in constructing thermal rectifier and thermal transistor by using the graded material are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا