ﻻ يوجد ملخص باللغة العربية
Current-controlled (also known as S-type) negative differential resistance (NDR) is of crucial importance to many emerging applications including neuromorphic computing and high-density memristors integration. However, the experimental realization of S-type NDR based on conventional mechanisms poses demanding requirements on materials, which greatly limits their potential applications. Here, we experimentally identify that semiconducting transition metal dichalcogenides (TMDs) can host a bipolar S-type NDR devices. Theoretical simulations indicate that the origin of the NDR in these devices arises from a thermal feedback mechanism. Furthermore, we demonstrate the potential applications of TMDs based S-type NDR device in signal processing and neuromorphic electronics.
We present low temperature magneto-photoluminescence experiments which demonstrate the brightening of dark excitons by an in-plane magnetic field $B$ applied to monolayers of different semiconducting transition metal dichalcogenides. For both WSe$_2$
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices in
We have observed tunable negative differential resistance (NDR) in scanning tunneling spectroscopy measurements of a double layer of C60 molecules on a metallic surface. Using a simple model we show that the observed NDR behavior is explained by volt
Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient excito
Due to the Coulomb interaction exciton eignestates in monolayer transitional metal dichalcogenides are coherent superposition of two valleys. The exciton band which couples to the transverse electric mode of light has parabolic dispersion for the cen