ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial spin freezing in the quasi-two-dimensional La2(Cu,Li)O4

90   0   0.0 ( 0 )
 نشر من قبل Wei Bao
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In conventional spin glasses, the magnetic interaction is not strongly anisotropic and the entire spin system freezes at low temperature. In La2(Cu,Li)O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of spins with antiferromagnetic correlations extending to neighboring planes become spin-glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin-liquid at low temperature. Such a novel partial spin freezing out of a spin-liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two dimensional S=1/2 Heisenberg system.

قيم البحث

اقرأ أيضاً

61 - Y. Chen , Wei Bao , Y. Qiu 2005
In conventional spin glasses, magnetic interaction is not strongly anisotropic and the entire spin system is believed to be frozen below the spin-glass transition temperature. In La2Cu0.94Li0.06O4, for which the in-plane exchange interaction dominate s the interplane one, only a fraction of spins with antiferromagnetic correlations extending to neighboring planes become spin-glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin-liquid at low temperature. Such a novel partial spin freezing out of a two-dimensional spin-liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two dimensional S=1/2 Heisenberg system.
When sufficient numbers of holes are introduced into the two-dimensional CuO2 square lattice, dynamic magnetic correlations become incommensurate with underlying lattice in all previously investigated La_{2-x}A_xCu_{1-z}B_zO_{4+y} (A=Sr or Nd, B=Zn) including high T_C superconductors and insulators, and in bilayered superconducting YBa_2Cu_3O_{6.6} and Bi_2Sr_2CaCu_2O_8. Magnetic correlations also become incommensurate in structurally related La_2NiO_4 when doped with Sr or O. We report an exception to this so-far well established experimental rule in La_2Cu_{1-z}Li_{z}O_4 in which magnetic correlations remain commensurate.
In this work it is studied the Hopfield fermionic spin glass model which allows interpolating from trivial randomness to a highly frustrated regime. Therefore, it is possible to investigate whether or not frustration is an essential ingredient which would allow this magnetic disordered model to present naturally inverse freezing by comparing the two limits, trivial randomness and highly frustrated regime and how different levels of frustration could affect such unconventional phase transition. The problem is expressed in the path integral formalism where the spin operators are represented by bilinear combinations of Grassmann variables. The Grand Canonical Potential is obtained within the static approximation and one-step replica symmetry breaking scheme. As a result, phase diagrams temperature {it versus} the chemical potential are obtained for several levels of frustration. Particularly, when the level of frustration is diminished, the reentrance related to the inverse freezing is gradually suppressed.
The zero-temperature critical state of the two-dimensional gauge glass model is investigated. It is found that low-energy vortex configurations afford a simple description in terms of gapless, weakly interacting vortex-antivortex pair excitations. A linear dielectric screening calculation is presented in a renormalization group setting that yields a power-law decay of spin-wave stiffness with distance. These properties are in agreement with low-temperature specific heat and spin-glass susceptibility data obtained in large-scale multi-canonical Monte Carlo simulations.
Spin freezing in the $A$-site spinel FeAl$_2$O$_4$ which is a spin liquid candidate is studied using remnant magnetization and nonlinear magnetic susceptibility and isofield cooling and heating protocols. The remnant magnetization behavior of FeAl$_2 $O$_4$ differs significantly from that of a canonical spin glass which is also supported by analysis of the nonlinear magnetic susceptibility term $chi_3 (T)$. Through the power-law analysis of $chi_3 (T)$, a spin-freezing temperature, $T_g$ = 11.4$pm$0.9~K and critical exponent, $gamma$ = 1.48$pm$0.59 are obtained. Cole-Cole analysis of magnetic susceptibility shows the presence of broad spin relaxation times in FeAl$_2$O$_4$, however, the irreversible dc susceptibility plot discourages an interpretation based on conventional spin glass features. The magnetization measured using the cooling-and-heating-in-unequal-fields protocol brings more insight to the magnetic nature of this frustrated magnet and reveals unconventional glassy behaviour. Combining our results, we arrive at the conclusion that the present sample of FeAl$_2$O$_4$ consists of a majority spin liquid phase with glassy regions embedded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا