ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow spin-glass and fast spin-liquid components in quasi-two-dimensional La2(Cu,Li)O4

62   0   0.0 ( 0 )
 نشر من قبل Wei Bao
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In conventional spin glasses, magnetic interaction is not strongly anisotropic and the entire spin system is believed to be frozen below the spin-glass transition temperature. In La2Cu0.94Li0.06O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of spins with antiferromagnetic correlations extending to neighboring planes become spin-glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin-liquid at low temperature. Such a novel partial spin freezing out of a two-dimensional spin-liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two dimensional S=1/2 Heisenberg system.



قيم البحث

اقرأ أيضاً

89 - Y. Chen , Wei Bao , Y. Qiu 2005
In conventional spin glasses, the magnetic interaction is not strongly anisotropic and the entire spin system freezes at low temperature. In La2(Cu,Li)O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of sp ins with antiferromagnetic correlations extending to neighboring planes become spin-glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin-liquid at low temperature. Such a novel partial spin freezing out of a spin-liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two dimensional S=1/2 Heisenberg system.
When sufficient numbers of holes are introduced into the two-dimensional CuO2 square lattice, dynamic magnetic correlations become incommensurate with underlying lattice in all previously investigated La_{2-x}A_xCu_{1-z}B_zO_{4+y} (A=Sr or Nd, B=Zn) including high T_C superconductors and insulators, and in bilayered superconducting YBa_2Cu_3O_{6.6} and Bi_2Sr_2CaCu_2O_8. Magnetic correlations also become incommensurate in structurally related La_2NiO_4 when doped with Sr or O. We report an exception to this so-far well established experimental rule in La_2Cu_{1-z}Li_{z}O_4 in which magnetic correlations remain commensurate.
We study the thermodynamic and dynamic phase transitions in two-dimensional polydisperse hard disks using Monte Carlo methods. A conventional local Monte Carlo algorithm allows us to observe a dynamic liquid-glass transition at a density, which depen ds very little on the degree of polydispersity. We furthermore apply Monte Carlo methods which sample the Boltzmann equilibrium distribution at any value of the density and polydispersity, and remain ergodic even far within the glass. We find that the dynamical transition is not accompanied by a thermodynamic transition in this two-dimensional system so that the glass is thermodynamically identical to the liquid. Moreover, we scrutinize the polydispersity-driven transition from the crystal into the disordered phase (liquid or glass). Our results indicate the presence of a continuous (Kosterlitz-Thouless type) transition upon increase of the polydispersity.
The interplay between geometric frustration (GF) and bond disorder is studied in the Ising kagome lattice within a cluster approach. The model considers antiferromagnetic (AF) short-range couplings and long-range intercluster disordered interactions. The replica formalism is used to obtain an effective single cluster model from where the thermodynamics is analyzed by exact diagonalization. We found that the presence of GF can introduce cluster freezing at very low levels of disorder. The system exhibits an entropy plateau followed by a large entropy drop close to the freezing temperature. In this scenario, a spin-liquid (SL) behavior prevents conventional long-range order, but an infinitesimal disorder picks out uncompensated cluster states from the multi degenerate SL regime, potentializing the intercluster disordered coupling and bringing the cluster spin-glass state. To summarize, our results suggest that the SL state combined with low levels of disorder can activate small clusters, providing hypersensitivity to the freezing process in geometrically frustrated materials and playing a key role in the glassy stabilization. We propose that this physical mechanism could be present in several geometrically frustrated materials. In particular, we discuss our results in connection to the recent experimental investigations of the Ising kagome compound Co$_3$Mg(OH)$_6$Cl$_2$.
In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down completely, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge b oth for experiments and theory. Here, we experimentally explore the relaxation dynamics of an interacting gas of fermionic potassium atoms loaded in a two-dimensional optical lattice with different quasi-periodic potentials along the two directions. We observe a dramatic slowing down of the relaxation for intermediate disorder strengths and attribute this partially to configurational rare-region effects. Beyond a critical disorder strength, we see negligible relaxation on experimentally accessible timescales, indicating a possible transition into a two-dimensional MBL phase. Our experiments reveal a distinct interplay of interactions, disorder, and dimensionality and provide insights into regimes where controlled theoretical approaches are scarce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا